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Abstract: IoT devices are resource-constrained in terms of processing, storage, and 
networking capacity, which makes it a difficult task to secure access to them. Today's 
authentication and access control schemes exhibit substantial drawbacks as a result of their 
rapid dissemination and implementation. This paper suggests a blockchain-based solution that 
enables secure communication and authentication with IoT devices. Our solution capitalizes 
on the inherent characteristics of blockchain technology and augments existing authentication 
protocols. Specifically, our proposed blockchain-based solution, architecture, and design 
enable accountability, integrity, and traceability through tamper-proof logs. The paper offers 
a comprehensive overview of the system's design and architecture, as well as specifics 
regarding the testing and implementation of a realistic scenario as a proof of concept. 
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1. Introduction 
The Internet-of-Things concept is a network of interconnected computing devices in a variety of fields 
and configurations that can be deployed globally. In order to provide a specific service, these devices 
are capable of communicating with other devices, gathering, sharing, and processing information [1]. 
The INTERNET will be connected to more than 50 billion devices by 2020, as per experts from 
CISCO, Ericsson, and other companies [2]. Currently, IoT devices are in operation in a variety of 
sectors, including personal accessories, medical equipment, and household appliances. In order to 
facilitate this functionality, these devices must possess specific attributes. They should be capable of 
communicating with other heterogeneous devices and operating on low energy. Additionally, they 
should be capable of maintaining a consistent connection with the back-end, if one exists, and be able 
to receive patches as needed. 
 
Authentication and access control are essential concepts for the secure management of computer 
resources and networks. These concepts should be redefined in the context of IOT in accordance with 
the aforementioned characteristics.  
 

The limited resources draw-back must be considered when developing techniques and access 
control policies. Similarly, classical access control methods, such as ABAC (Attribute-based access 
control) and RBAC (Role-based access control), have been demonstrated to be inflexible, unscalable, 
and difficult to upgrade in IOT conditions [6,13]. 
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Furthermore, the centralized perception of authentication, which necessitates that all devices 
communicate with a specific entity, is a significant disadvantage. The construction of a system that is 
contingent upon a trusted third party necessitates the assumption of a TTP that is consistently authentic 
and accessible. This results in a bottleneck surrounding the trusted party, which in turn impacts 
availability. In the event that the centralized entity is compromised, the model also fails. In addition, 
the TTP has the ability to alter records without regard for accountability. Blockchain technology can 
be employed to address these drawbacks in the IOT design [3]. 

The technology that underpins Bitcoin is referred to as blockchain [4]. A growing chain of records 
can be used to define it. The blockchain is designed to inherit effective characteristics, such as the 
decentralization, tamper-proofing, and equal access to blocks of records by all nodes. This concept can 
be applied to any application that necessitates a trusted third party to verify records or transactions. 
The blockchain technology has enabled the replacement of the trusted third party with a transparent, 
untampered block of records that is accessible through a distributed form. Consequently, the trust is 
transferred from a single entity to a decentralized community of blockchain nodes. 

The smart contract is a highly effective approach that employs the blockchain concept. In 1996, 
Smart-Contract was initially defined as a self-operating or self-executing program [5]. To facilitate the 
development of blockchain automated applications, this method was reintroduced in the Ethereum 
blockchain. Events and logs are features of the Ethereum blockchain. An event is a response (returned 
value) from the smart contract to the user interface that is interacting with it. The primary objective of 
utilizing events and logs is to facilitate communication between smart contracts and the programs that 
interact with them. 
 

2. Literature Review 
In this section, a variety of existing methods are presented to address the issue of authentication 
management and access control in IoT devices. In addition to their advantages and disadvantages, 
Section 2.1 will examine conventional methods of authentication and access control. The solutions 
presented in Sect. 2.2 are unique in that they all rely on blockchain technology as the foundation for 
their concepts. 
 

2.1 IOT Authentication Traditional Models 
A fundamental method is to directly authenticate with each device by utilizing a combination of 
(username, password). This method offers adequate access control, as the administrator (owner) 
specifies and stores the roles and permissions of each authenticated user on the device. Nevertheless, 
this approach is not scalable and generates an overhead due to the fact that the user must authenticate 
to each machine independently. Classic IoT devices, such as IP cameras and Internet-accessed home 
utilities, exhibit this technique [6]. 

A more sophisticated solution is to authenticate using single-sign-on protocols. For example, 
when oauth2 is implemented as an authentication method, users attempt to access a device by 
authenticating with a trusted oauth2 provider. This reputable third party may include Facebook, 
Google, and so forth. The trusted entity grants access if they successfully authenticate and possess the 
necessary permissions [7].  
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Authentication to the trusted entity is required to access resources that are managed by the same 
individual [8]. Initially, the device serves as the oauth2 client and transmits an authorization request to 
the user when the user attempts to access the IOT device resources. Subsequently, the user authorizes 
the client to communicate with the authorization server, which is the oauth2 provider. Then, the IOT 
device communicates with the oauth2 provider to verify the user's authorization to access its resources 
[9]. By authenticating to a single entity, the user can access multiple entities, thereby saving time and 
effort. In addition, the integration of such a solution is typically facilitated by the fact that the oauth2 
provider is a reputable third party. 

Conversely, the risk of a single point of failure threatening the availability of the proposed 
approach is exacerbated by the reliance on a centralized entity. Furthermore, if the user's account or 
the centralized entity is compromised, the entire system is impacted. Phishing is a critical attack vector 
that has a high success rate and has the potential to result in the failure of this model. Furthermore, 
spear phishing campaigns are becoming increasingly sophisticated, precise, and intensive in recent 
years, which has the potential to deceive even the most educated users [10]. In 2016, 76% of 
organizations reported being phished, as indicated by the Symantec Latest Intelligence Report for June 
2017 [11]. 

The methods that have been discussed thus far provide a valid implementation for IoT 
authentication. Nevertheless, they are susceptible to certain deficiencies that may compromise their 
availability, performance, and scalability. The following methodologies have the potential to be 
implemented as an IoT authentication management and access control solution that employs 
blockchain technology. 

 
2.2 Blockchain-Based  Authentication  Models 
A challenge-response method was introduced by Auth0 to authenticate to a server via the 

Ethereum blockchain. The auth0 approach's drawback is the necessity of a third-party authentication 
server. It is a hybrid solution that integrates the centralization of a trusted third party with the 
decentralization of blockchain. The "Single Point of Failure" or "Single Point of Trust" issue will 
resurface with this methodology. The centralized server is crucial, as it is involved in 62.5% of the 
entire operation, according to Auth0. This undermines the advantages of blockchain technology by 
increasing dependence on a centralized entity [12]. 

Blockstack is introducing the concept of a new decentralized internet. Applications for storage 
and authentication are present on this network. In a manner comparable to public key infrastructure 
(PKI), the system employs a user's keypair to authenticate. Unique JSON Web Tokens are generated 
when users are authenticated accurately. The JWT enables access to all pre-authorized resources 
through a single authentication process that has been previously verified. 

Unfortunately, the operation of blockstack is contingent upon the fulfillment of numerous 
prerequisites. The initial prerequisite for this system is the utilization of a block stack browser, as its 
objective is to transition to a newly decentralized network. If not, the user's machine should be installed 
with the blockstack application. Furthermore, the system implemented two additional layers on top of 
the blockchain: the peer network layer and the storage layer, which resulted in an increase in 
operational overhead. Lastly, the Blockchain Name System serves as a substitute for conventional 
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DNS in the context of entity interaction [13]. BNS is one of numerous innovative implementations 
that are designed to replace the traditional domain name system. 

 
3. Proposed Mechanism 

The paper proposes a blockchain-based solution that features a unique system architecture. It resolves 
the deficiencies of existing solutions. Additionally, it should be portable and capable of operating on 
any network with minimal dependencies, in contrast to blockstack. It is intended for IoT devices that 
are deficient in processing power. It also introduces the concept of OAuth implementation through a 
smart contract, which allows users to log in once and manage all authorized devices without the need 
to log in separately for each IoT device. Furthermore, the IoT devices have the capacity to operate 
smart contracts, thereby emerging as self-profiting devices. 
There are numerous benefits to employing the Ethereum blockchain as a platform for this solution. 
Ethereum boasts a robust development framework that is already established. An incentive for miners 
to resolve challenge hashes. Additionally, the Ethereum light client protocol is capable of operating 
on IoT devices with limited memory and processing power, which is crucial for the proposed solution 
[14]. 

 
One-Time Authentication: Directly authenticate to the blockchain and access the resource using smart 
contract tokens. In this scenario, the user authenticates with the smart contract, which verifies their 
identity. Subsequently, the smart contract determines whether the user is authorized to access the 
resources. The authentication process is conducted in a separate phase. Upon successful completion, the 
user is able to interact with the device using their preferred method, such as ssh, http, or https. It is an 
efficient method of achieving decentralized authentication. Section 4 will address the assessment of this 
solution. 
 
3.1 Assumptions 
The subsequent assumptions must be considered in order to implement this solution: 

 One or more IoT devices are owned by the user. 

 The private key of the user is safeguarded, as the Ethereum keystore is not compromised. 

 The user maintains an Ethereum account. 

 Both the user and the IoT device are linked to the Ethereum blockchain. 

 The smart contract will be deployed by the user. 
Fully functional, the system is capable of challenging the final assumption. A centralized smart 
contract that authenticates users to their respective IoT devices can be established. Nevertheless, this 
paper's objective is to circumvent dependence on a central entity. It is more appropriate to request that 
users deploy their own smart contracts in order to achieve complete control over their own systems. 
This will establish a decentralized blockchain that is powered by decentralized smart contracts, with 
each user possessing their own smart contract. 
 
3.2 System Architecture 
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The steps of the authentication process are illustrated in the message sequence diagram in Fig. 1. The 
Ethereum wallet address of the user is used to authenticate to the smart contract. The smart contract 
broadcasts an Access token and the sender's Ethereum address if the user is valid. The smart contract 
disseminates information to the user and the IoT device. The user creates a package that includes the 
Ethereum public key, user IP, access duration, and access token. This package is signed with the Ethereum 
private key and subsequently transmitted with the corresponding public key. If desired, the package may be 
encrypted. Nevertheless, it is not necessary for the protocol to function. In this situation, integrity is of 
paramount importance; consequently, the message is signed. The content of the package is verified by the 
IOT device upon its receipt. If successful, the device provides the user with access from the sender's 
IP for the specified duration. Alternatively, the request is terminated if any of the aforementioned 
checks fails.  
 

 
Figure 1: Proposed Architecture  

The initial step of the smart contract involves the completion of its authentication process. It is 
acknowledged that the IOT device must execute numerous verification procedures. Nevertheless, 
this solution functions flawlessly on a standard Raspberry Pi 3 Model B. Working Model of 
Proposed model is described as follows: 
Proposed Mechanism: 
Step 1: Authorization Request 
AuthReq(I→U):I requests authorization from U 
ReqIU=Request(I,U) 
Where ReqIU is the authorization request from I to U. 
Step 2: Authorization Grant 
AuthGrant(U→I):U grants authorization to I 
GrantUI=Grant(U,I) 
Where GrantUI  is the authorization grant from U to I. 
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Step 3: Forward Authorization Grant 
AuthGrant(I→A):I forwards the authorization grant to A GrantIA=ForwardGrant(I,A,GrantUI) Where 
GrantIA is the forwarded authorization grant from I to A. 
Step 4: Access Token Generation 
AccessToken(A→I):A generates an access token and sends it to I 
TokenAI=GenerateToken(A,I,GrantIA) 
Where TokenIA  is the access token generated by A for I. 
Step 5: Send Access Token to Resource Server 
AccessToken(I→R):I sends the access token to R  
TokenIR=SendToken(I,R,TokenAI) 
Where TokenIR is the access token sent from I to R. 
Step 6: Access Protected Resource 
ProtectedResource(R→I):R validates the token and provides access to the protected resource to I 
ResourceRI=AccessResource(R,I,TokenIR) 
Where ResourceRI is the protected resource accessed by I from R. 
 
The proposed mechanism outlines a detailed process for securing data transmission in an online social 
network environment using a combination of authorization requests, grants, and access tokens. Initially, 
the Internet of Things (IoT) device (Client), denoted as I, initiates the process by sending an 
authorization request to the User (Resource Owner), labeled as U. This step is represented by the 
equation AuthReq(I→U), where ReqIU=Request(I,U). The User, upon receiving this request, evaluates 
the credentials and the need for access before issuing an authorization grant back to the IoT device, 
captured by AuthGrant(U→I and mathematically expressed as GrantUI=Grant(U,I). This grant signifies 
that the User has validated the IoT device’s request and permits it to proceed to the next step. 
Following the receipt of the authorization grant from the User, the IoT device forwards this grant to the 
Authorization Server, denoted as A. This is crucial for ensuring that the server can generate the 
necessary access tokens for secure data transmission, depicted by AuthGrant(I→A) and 
GrantIA=ForwardGrant(I,A,GrantUI). The Authorization Server, after receiving and verifying the 
forwarded grant, generates an access token and sends it back to the IoT device, which is represented by 
AccessToken(A→I) and TokenAI=GenerateToken(A,I,GrantIA). This access token serves as a secure 
credential that the IoT device uses to authenticate itself to the Resource Server. 

In the subsequent phase, the IoT device, now armed with the access token, sends this token to the 
Resource Server, marked as R. This transaction is captured by AccessToken(I→R) and 
TokenIR=SendToken(I,R,TokenAI). The Resource Server, upon receiving the token, verifies its validity 
and authenticity. Once verified, the Resource Server provides access to the protected resource to the 
IoT device, as indicated by ProtectedResource(R→I) and ResourceRI=AccessResource(R,I,TokenIR). 
This step ensures that the IoT device can access the necessary data securely. Throughout this process, 
standard security protocols such as SSL and SSH are assumed to secure the communication channels 
between all entities, ensuring that data integrity and confidentiality are maintained. This robust 
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mechanism not only enhances security but also ensures that access to sensitive data is controlled and 
monitored, providing a reliable framework for managing data access in cloud-based environments. 

One potential improvement is the incorporation of dynamic access control mechanisms. By leveraging 
dynamic policies, the system can adjust access rights based on context, user behavior, and real-time 
analysis. This can be mathematically modeled using a function f that dynamically updates access 
permissions P based on variables such as time t, location l, and user activity a: 

Pnew = f(Pcurrent, t, l, a) 

This ensures that access control is adaptive and responsive to changing conditions. Additionally, we can 
define the dynamic policy function as: 

f(Pcurrent, t, l, a) = Pcurrent (1 +(w1t+w2l+w3a)/(w1+w2+w3)) 

where w1, w2, and w3 are weights assigned to time, location, and activity respectively. 

Moreover, incorporating audit logs and monitoring tools into the system can significantly improve 
transparency and accountability. By keeping a detailed log of all access requests, authorizations, and 
data retrievals, the system can provide a comprehensive audit trail. This can be represented by the 
equation: 

Log = {(ti, useri, actioni, resourcei, statusi)}i=1 
n 

where ti denotes the timestamp, useri represents the user involved, actioni signifies the action taken (e.g., 
request, grant, access), resourcei indicates the resource in question, and statusi denotes the outcome of 
the action. 

Req = {(ti, useri, resourcei, purposei)}i=1
m 

where purposei indicates the purpose of the access. The authorization grant equation can be expressed 
as: 

Grant ={(ti, useri, resourcei, validityi)}i=1
k 

where validityi represents the validity period of the grant. For data retrieval actions, the formula can be: 

Dataretrieval = {(ti, useri, resourcei, datai)}i=1
p 

where datai is the retrieved data content. Monitoring these logs for anomalies involves a detection 
function D defined as: 
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Anomaly = D(Log) = {(ti, useri, actioni) | actioni != expectedaction } 

where expectedaction is the predefined legitimate action for the user. Implementing real-time monitoring 
and alerting mechanisms can further enhance the system's ability to respond to potential security threats 
promptly. These enhancements ensure that the proposed mechanism not only maintains high security 
and privacy standards but also provides robust tools for compliance and risk management. 

The proposed solution can be implemented in a modular manner, with each phase being constructed 
separately and subsequently integrated. This will expedite the development process. Additionally, the 
resolution of obstacles will facilitate the process of debugging. The solution that has been presented will 
be elaborated upon in two subsections. The initial subsection will provide an explanation of the 
functionality of the smart contract and the manner in which it performs authentication during the initial 
phase. The second subsection delves into the authentication interaction between the user and the IoT 
device following the successful completion of the initial phase. 
 
3.3 Phase 1: Smart Contract 
The initial phase initiates when the user authenticates with the smart contract to establish their legitimacy. 
The pseudo-code provided below provides a description. The admin user is the sole legitimate user in this 
iteration of the smart contract. In other words, the admin user is the individual who deployed this smart 
contract on the blockchain. It is possible to increase the number of users by incorporating an addUser() 
method into the smart contract. 

The Smart Contract of the Proposed Solution: 
pragma solidity ^0.8.0; 
contract Login2 { 
    address private owner; 
    bytes32 private hash; 
    uint256 private random_number; 
    event LoginAttempt(address indexed admin, bytes32 hash); 
 
    constructor() { 
        owner = msg.sender; 
    } 
 
    function login_admin() private { 
        require(msg.sender == owner, "Unauthorized: Only the owner can login."); 
 
        random_number = uint256(keccak256(abi.encodePacked(block.timestamp, 
block.difficulty, msg.sender))) % 100 + 1; 
        hash = keccak256(abi.encodePacked(msg.sender, block.timestamp, 
random_number)); 
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        emit LoginAttempt(msg.sender, hash); 
    } 
} 
Users utilize their Ethereum client to invoke the login admin method in order to authenticate. The login 
admin function is protected from public usage and requires no parameters. This is due to the fact that a 
modifier verifies the sender's Ethereum address, ensuring that only authorized users can access it. When 
this function is invoked by a verified user, the login admin generates a random hash using the rand 
function. Then, the login admin generates a token by hashing the user's Ethereum address, block time, 
and the random hash generated in the most recent step. Subsequently, an event is triggered to transmit 
the token and the authenticated user's address to the IOT device and user, enabling them to proceed with 
phase 2. 
 
3.4 Phase 2: User-IOT Interaction 
The Ethereum address of the authorized user and an authentication token are received by the user 
and the IOT device upon the successful completion of phase 1. Phase 2 establishes a connection 
between the two entities. Please be advised that this solution presupposes that the user is aware of 
the address of the IOT device, which is either the IP address or the domain name. In the event that 
this is not the case, the device address can be transmitted via the LoginAttempt event. 
User Side Implementation Flow: Initially, the user's script establishes a connection to the 
Ethereum blockchain by utilizing the web3 Ethereum client and nodejs to monitor events emanating 
from the deployed smart contract in phase 1. The user's script accesses the keystore directory, which 
contains the user's secret keys, and extracts the private key when the event has arrived. Please be 
advised that the script requires the 
 
In order to execute this action, the key must be passed. Subsequently, the script extracts the public key 
from the private key. The Keccak256 algorithm is employed to hash the public key. The Ethereum 
address of the user is represented by the final 40 bytes of the resulting hash. This Ethereum address is 
compared to the one obtained from the smart contract event. This is the official method for obtaining 
an Ethereum address from a keystore directory. It is important to note that the Ethereum address is used 
in place of the public key, as it is more convenient and shorter. This is accomplished by utilizing 
keythereum to access the private key and elliptic to derive the public key. Those Node.js libraries are 
available for download online [15]. 
 
After verifying that the Ethereum address obtained from the smart contract corresponds to the user's 
address. Constructing the authentication message is initiated by the script. The message can be 
summarized as follows: 
 

message = [token + srcip + Authdur + PubK] 
where token: is the token that was received from the smart contract. 
srcip: is the IP address from which the user will establish a connection. 
Authdur: The duration of the authentication's validity before it is revoked and a new authentication is 
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necessary 
The public key of the user's Ethereum account is denoted as Pubk. Ultimately, the private key 
associated with the user's Ethereum account is employed to sign the message. The authentication 
package that follows is transmitted to the IoT device. 

message + Signature + PubK 

 
IOT Side Implementation Flow: The IOT device script commences in a manner that is comparable to 
the user script. It establishes a connection with the smart contract that was implemented in phase 1 and 
monitors for the desired event. The script obtains the Ethereum address and authentication token of the 
authenticated user when the event occurs. The script awaits the user's authentication package. The 
verification phase commences upon the package's arrival. The authentication package is discarded in 
order to reduce the processing power of the IOT device in the event that any of the verification steps 
are unsuccessful. The current step must be verified before the process advances to the subsequent step. 
 
Steps of the Verification Phase: 

 Verify if the authentication package and message are in the correct format. 

 Validate the message signature using the public key. 

 Check if the public key in the authentication package matches the one in the message. 

 Compare the token in the message with the token from the smart contract. 

 Ensure the source IP address in the message matches the source IP address of the sender of the 
authentication package.[23] 

 Hash the public key in the message and extract the last 40 bytes to see if the result matches the 
Ethereum address from the smart contract. 

If all these verification steps are successful, the user is authenticated. Otherwise, the authentication 
package is discarded. This process adds linear execution complexity to the program, adhering to BigO 
standards, depending on the input. 

O(kn)= O(n)  
Where k is a constant. 
 

4. Testing and Evaluation 
This section delves into the security and functionality tests that were conducted following the 
implementation of the prototype of the proposed solution. Furthermore, the cost of establishing 
communication between the user and the smart contract is included. It is important to note that "setter" 
functions typically incur a cost for the user, as they necessitate miners to modify the blockchain, whereas 
"getter" functions do not incur any time or cost. 
 
In order to modify the attributes of a smart contract, a transaction must be executed on the Ethereum 
blockchain. The fee is determined in GAS and disbursed in Ether. The owner has the option to determine 
the quantity of gas necessary when the smart contract is implemented. This transaction is mined first 
due to an increase in gas prices. It is a compromise between cost and priority. The cost of "21K" gas in 
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December 2017 is $0.01. This quantity of gas corresponds to 2 gwei, which is the standard. 
 
Rapidity of transaction execution: This cost is arguably justifiable, as it offers a tamper-proof block of 
records and a decentralized authentication platform. Alternatively, the alternative solution would be to 
entrust your data to a centralized entity, which would increase the risk of a single point of failure and 
the loss of sensitive data. A third alternative is to operate a self-owned decentralized database, which 
incurs additional expenses for maintenance and administration. 
 
The fluctuating value of Ethereum can present a challenge for smart contract users. Ethereum's value 
has reached its maximum during a specific period following the deployment test of the smart contract 
in this paper. Subsequently, it has returned to its standard price. A drawback that impacts the stability 
of smart contract usage is the fluctuating price of cryptocurrencies. Nevertheless, Ethereum intends to 
resolve this issue through its forthcoming consensus algorithms. 

 

Figure 2: Daily Ethereum GasPrice in Gwei (Aug 21, 2023 - Feb 5, 2024). 

The provided bar chart in figure 2 visualizes Ethereum's gas prices in Gwei over the period from August 
21, 2023, to February 5, 2024. Each bar represents the daily average gas price, showing significant 
fluctuations in the cost of executing transactions on the Ethereum network. In the initial weeks, gas 
prices are observed to be relatively high, frequently exceeding 40 Gwei, indicating substantial network 
activity and congestion. As we move into October and November, a slight decrease in the average gas 
prices is noticeable, suggesting a period of reduced demand or improved network efficiency. 

However, from mid-December through January, there is a resurgence in gas prices, with several spikes 
reaching above 50 Gwei, possibly due to increased transaction volume or specific events that caused 
temporary congestion. This period highlights the volatility and sensitivity of gas prices to network 
conditions. The chart demonstrates the dynamic nature of Ethereum's network, where gas prices can 
vary significantly day-to-day based on user demand and network capacity. This visualization is essential 
for understanding the cost trends associated with Ethereum transactions over time. 
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Figure 3: Daily Ethereum Transaction Count (Aug 21, 2023 - Feb 5, 2024) 

 
The bar chart illustrates in figure 3 presents the daily transaction count on the Ethereum network from 
August 21, 2023, to February 5, 2024. Each bar represents the total number of transactions processed 
on the network each day. Throughout the period, the transaction count shows a consistent pattern, 
generally ranging between 60,000 and 140,000 transactions per day. Notable peaks can be observed 
sporadically, indicating days of higher activity which could be due to specific events, network upgrades, 
or increased usage of decentralized applications (DApps) and services on Ethereum. 
 
In the initial period of late August and early September, there are frequent spikes in transaction counts, 
often exceeding 120,000 transactions per day. This suggests periods of high network usage, which could 
correspond to market movements or significant events in the cryptocurrency space. As we move towards 
the end of the year, particularly in December and early January, the transaction count becomes more 
volatile, with several days surpassing 140,000 transactions. This could reflect heightened activity during 
the holiday season, possibly due to increased trading volumes or other blockchain-related activities. 
 
Overall, the chart highlights the robust and active usage of the Ethereum network over the months, 
showcasing its ability to handle a substantial number of transactions daily. This level of activity 
underscores the importance of Ethereum as a leading platform for smart contracts and decentralized 
applications. 
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Figure 5: Summary of Ethereum Average GasPrice and Transaction Count (Sep 23 - Feb 24) 

The summary bar chart illustrates the monthly average values of Ethereum's gas prices and transaction 
counts from September 2023 to February 2024. The orange bars represent the average gas prices 
measured in Gwei, while the blue bars depict the average transaction counts. This dual-axis chart 
provides a comprehensive overview, showcasing how these two critical metrics fluctuated over the 
observed period.  
 
In September 2023, the average gas price was slightly higher compared to the subsequent months, 
indicating increased network activity. Transaction counts remained relatively stable, with a notable 
increase in January 2024, reflecting a surge in network usage during that month. The chart effectively 
highlights the relationship between gas prices and transaction volumes, offering valuable insights into 
Ethereum's network performance and user activity trends over the six-month period. 
4.1 Costs 
The transaction cost, execution cost, and equivalent price in US dollars for the deployment and 
utilization of the smart contract are presented in Table 1. 
 

Table 1. Gas cost for running functions 
 

Function Transaction 
cost 

Execution 
cost 

Total 
cost 

Price in 
USD 

Deployment 275146 170461 445623 $0.2134 
login admin 64079 42821 106927 $0.0529 

 
The initial rows display the cost of deploying the smart contract, which is performed only once. 
Deploying the smart contract is evidently more costly due to its writing to the blockchain. Conversely, 
the login feature is less costly. The login function can be optimized to reduce costs. The current price is 
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due to the fact that it generates the authentication token by hashing, generating a random number, and 
retrieving the block hash. These prices are indicative of the expense associated with employing the 
conventional proof-of-work consensus protocol. The costs will decrease significantly as a result of 
Ethereum's transition to standardizing the proof-of-authority protocol, as the workload of the miners 
will decrease as well. 
 

4.2 Testing 
The testing phase was partitioned into distinct subsections. Initially, the proposed solution undergoes 
manual testing to guarantee its security, performance, and robustness. In addition to the ideal test cases, 
manual tests incorporate malicious scenarios. Secondly, static analysis tools are employed to conduct 
an automated security assessment of the smart contracts. 

 
Manual Testing: The ideal scenario was tested first after the solution prototype was run. The smart 
contract function is invoked by a legitimate user who logs in as the administrator using their MIST 
Ethereum client. The smart contract simultaneously transmits the user's Ethereum address and the 
authentication token to the user and IoT device. The initial phase was completed on a private blockchain 
in less than four seconds, as indicated by the test. The user subsequently establishes a connection with 
the IoT device by transmitting the authentication package delineated. 

 The IOT authentication script's verification steps were bypassed through the execution of a few 
malicious attacks, as detailed below: 

 The replay attack was unsuccessful due to the fact that the source IP of the attacker must be identical 
to the source IP of the signed authentication message. 

 The script failed to modify the signed authentication message because it verifies the message 
signature. 

 The attacker's authentication package was unsuccessfully injected, as the public key should 
correspond to the Ethereum address of the legitimate user. 

 
It is possible for a man-in-the-middle to intercept outgoing authentication packages. Nevertheless, 
integrity is safeguarded by the fact that the signed authorization message cannot be altered. The test 
phase's results demonstrate that this solution is secure, provided that the user's keypairs are not 
compromised. Upon successful completion of the authentication process, the authentication tokens 
should be invalidated and replaced. The subsequent actions are beyond the scope of this paper.[22] 
 
The test environment is subject to change when the current solution is being tested. Initially, the majority 
of tests are conducted on a private Ethereum blockchain. This facilitates the mining and validation of 
transactions. Afterward, it is advised to employ Rinkeby instead of Ropsten when testing the smart 
contract on the public Ethereum blockchain test-net, as it employs Proof-of-Authority rather than Proof-
of-Work, which is the method employed by Ropsten. In addition, this will facilitate the public testing 
approach. 
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The current method employed in the Ethereum main network and the Ropsten network to confirm 
transactions is the proof of work concept. A mathematical puzzle is solved by a miner in order to validate 
the transaction and receive an incentive. The execution of this method necessitates a significant amount 
of processing power. In contrast, the Rinkeby test-net's proof of authority is contingent upon a set of 
explicitly authorized nodes, rather than miners resolving mathematical problems. Consequently, it is 
regarded as the future of mining techniques, as it does not necessitate as much processing power [16]. 
 
Automated Testing: Static Security Analysis: ConsenSys conducted a security assessment through 
static analysis using mythril. It employs concolic analysis to identify security vulnerabilities in 
smart contracts. It is capable of functioning in both whitebox and blackbox testing scenarios. A 
whitebox testing was conducted on the smart contract source code due to its availability. Mythril 
did not encounter any complications. Furthermore, a control flow graph is generated for the smart 
contract source code to guarantee that all potential paths are examined. The Ethereum Laser 
Symbolic Virtual Machine is employed to generate the graph.  
 
Lastly, performing formal method tests on the smart contract to ensure that all potential execution 
paths are anticipated and covered is another metric that can be suggested for future testing. The 
current endeavors are documented in [17]. 
 

4.3 Evaluation 
To assure the quality of the proposed solution, the next step is to compare it to previous solutions. The 
evaluation metric is based on whether the offered authentication scheme solved problems occurring in 
the other authentication mechanisms proposed for the IOT devices. 

Table 2. Comparing and evaluating authentication solutions 
 

 Auth/device Oauth2 Auth0 Blockstack Paper sol. 

Availability C X X X C 
Scalability X X C C C 
Decentralizati
on 

C X X C C 

Tamper proof X X X C C 
 

The proposed solution is compared in Table 2 based on availability, scalability, decentralization, and 
tamper-proof. The evaluation metrics are defined with greater precision for this comparison. 
Availability is defined as the absence of a single point of failure and the removal of the bottleneck. The 
term "scalability" is employed to delineate the additional overhead that the application incurs when 
additional devices are incorporated. Decentralization is the capacity of the authentication application to 
function independently of a central entity that could potentially disrupt the system in the event of its 
failure. Tamper proof is the guarantee that saved data and transactions cannot be tampered with once 
they have been recorded in the system's logs. 
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5. Conclusion 

In this paper, we have suggested a blockchain-based solution that enables users to securely access IoT 
devices by proving their authentication. We illustrated how our methodology surpasses the deficiencies 
of existing authentication protocols. We demonstrated that our blockchain-based solutions, which 
utilize Ethereum smart contracts, can enhance current methods by enabling decentralization and tamper-
proof records. Using available IoT devices and technologies, we developed and executed our solution 
in accordance with real-world scenarios. In particular, we demonstrated the process of successfully 
authenticating legitimate users in order to access their IoT devices. Additionally, we demonstrated that 
our methodology could withstand crafted attacks that were designed to hijack legitimate sessions and 
brute force credentials. In the future, we intend to expand the proposed approach to encompass a vast 
number of IoT devices and end users by implementing a massive scale access and authentication system. 
Additionally, we intend to evaluate the application's performance in terms of scalability and cost (or 
gas) consumption on a genuine Ethereum blockchain network. We are also taking into account the 
monetization aspects of IoT devices and their data, which involve the payment of usage through a 
crypto-token of ether. 
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