DOI 10.6084/m9.figshare.26310024 http://magellanes.com/

4-TOTAL GEOMETRIC MEAN CORDIAL LABELING OF TREE RELATED GRAPHS

L. Vennila 1 Dr. P. Vidhyarani²

¹Research Scholar [Reg. No: 19211202092025] Department of Mathematics, Sri Parasakthi College for Women, Courtallam-627802, Affiliated to Manonmaniam Sundaranar University, Abisekapatti - 627012, Tamilnadu, India.

²Assistant Professor, Department of Mathematics, Sri Parasakthi College for Women, Courtallam-627802, India.

Abstract:

Let G be a (p, q) graph. Let $f: V(G) \to \{1, 2, 3, ..., k\}$ be a function where $k \in N$ and k > 1. For each edge uv, assign the label $f(uv) = \left\lceil \sqrt{f(u)f(v)} \right\rceil$. f is called k-Total geometric mean cordial labeling of G if $|t_{mf}(i) - t_{mf}(j)| \le 1$, for all $i, j \in \{1, 2, 3, ..., k\}$, where $t_{mf}(x)$ denotes the total number of vertices and edges labeled with $x, x \in \{1, 2, 3, ..., k\}$. A graph that admits the k-total geometric mean cordial labeling is called k-total geometric mean cordial graph.

In this paper we investigate 4- total geometric mean cordial (4-TGMC) labeling behavior of some Tree related graphs.

Keywords:

Twig graph, Lily graph, Fire Crackers graph, W- graph, P(m, H_n), 4- Total geometric mean cordial labeling, 4- TGMC graph.

I. Introduction

Graphs considered here are finite, simple and undirected. Graph labeling we refer to Gallian [1]. We pursue [2] for symbols and phrases. The motivation of the works done by [3], [4], [5], [6], [7]. The notation of k-total geometric mean cordial labeling of some graphs was introduced in [8]. We investigated 4-total geometric mean cordial labeling behavior of star graphs and disconnected graphs in [9], [10]. In this paper we investigate 4-total geometric mean cordial labeling of some Tree related graphs.

AMS Mathematics Subject Classification (2010): 05C78.

Definition 1.1

Let G be a (p, q) graph. Let $f: V(G) \to \{1, 2, 3, ..., k\}$ be a function where $k \in \mathbb{N}$ and k > 1. For each edge uv, assign the label $f(uv) = \left\lceil \sqrt{f(u)f(v)} \right\rceil$. f is called k-Total geometric mean cordial labeling of G if $|t_{mf}(i) - t_{mf}(j)| \le 1$, for all $i, j \in \{1, 2, 3, ..., k\}$, where $t_{mf}(x)$ denotes the total number of vertices and edges labeled with $x, x \in \{1, 2, 3, ..., k\}$. A graph that admits the k-total geometric mean cordial labeling is called k-total geometric mean cordial graph.

Definition 1.2.

The graph obtained from the path P_n by attaching exactly two pendant vertices to each internal vertex

Volume 06 Issue 2 2024 ISSN:1624-1940

DOI 10.6084/m9.figshare.26310024 http://magellanes.com/

of path is called Twig graph.

Definition 1.3.

A lily graph l_n , $(n \ge 2)$ can be constructed by two star graphs $2K_{1, n}$, $n \ge 2$ joining two path graphs $2P_n$, $n \ge 2$ with sharing a common vertex, that is $l_n = 2K_{1,n} + 2P_n$.

Definition 1.4.

Fire crackers graph is obtained by attaching a star graph S_m at each pendant vertices of P_n , such a fire cracker graph is denoted as $P_n \odot S_m$. Note that the fire cracker graph $P_n \odot S_m$ of order n+ 2m and of size n+ 2m -1.

Definition 1.5.

Consider the two copies of star graph $K_{1,n}$. If the last pendant vertex in the first copy of $K_{1,n}$ is merged with the initial pendant vertex in the second copy of $K_{1,n}$ then the resulting graph is called W-graph and it is denoted by W_{2n+1} . Clearly

$$|E(W_{2n+1})| = 2n \text{ and } |V(W_{2n+1})| = 2n + 1.$$

II. Main Results

Theorem 2.1.

Twig graph T_n is 4- total geometric mean cordial for all $n \ge 3$.

Proof:

Let $u_1, u_2, u_3, ..., u_n$ be the vertices of the path P_n . Let v_i , w_i be the pendant vertices attached to the vertex u_i of P_n , which has 3n-4 vertices and 3n-5 edges.

The function f: $V(G) \rightarrow \{1, 2, 3, 4\}$ defined by

Case1: when n is odd

Allocate the label 3 to the $\frac{n+1}{2}$ vertices $u_1, u_2, u_3, \dots, u_{\frac{n+1}{2}}$, next we allocate the label 4 to the $\frac{n-1}{2}$ vertices $u_{\frac{n+3}{2}}, u_{\frac{n+5}{2}}, u_{\frac{n+7}{2}} \dots u_n$ now we consider the pendant vertices, the labeling pattern of v and w is **Subcase 1:** $n \equiv 1 \pmod{4}$

Allocate the label 1 to the $\frac{3n-5}{2}$ vertices $v_1, v_2, v_3, \dots, v_{\frac{3n-3}{4}}$ and $w_1, w_2, w_3, \dots, w_{\frac{3n-7}{4}}$ and allocate the label 3 to the $\frac{n-3}{2}$ vertices $v_{\frac{3n+1}{4}}, v_{\frac{3n+5}{4}}, \dots, v_n$ and $w_{\frac{3n-3}{4}}, w_{\frac{3n+1}{4}}, w_{\frac{3n+5}{4}}, \dots, w_n$.

Subcase 2: $n \equiv 3 \pmod{4}$

Now we allocate the label 1 to the $\frac{3n-5}{2}$ vertices $v_1, v_2, v_3, \dots, v_{\frac{3n-5}{4}}$ and $w_1, w_2, w_3, \dots, w_{\frac{3n-5}{4}}$, then we allocate the label 3 to the $\frac{n-3}{2}$ vertices $v_{\frac{3n-1}{4}}, v_{\frac{3n+3}{4}}, v_{\frac{3n+7}{4}}, \dots, v_n$ and $w_{\frac{3n-1}{4}}, w_{\frac{3n+3}{4}}, w_{\frac{3n+7}{4}}, \dots, w_n$.

Case 2: when n is even

Allocate the label 3 to the $\frac{n}{2}$ vertices $u_1, u_2, u_3, \dots, u_{\frac{n}{2}}$, next we allocate the label 4 to the $\frac{n}{2}$ vertices $u_{\frac{n+2}{2}}, u_{\frac{n+4}{2}}, u_{\frac{n+6}{2}}, \dots, u_n$, now consider the pendant vertices, the labeling pattern of v and w is **subcase 1:** $n \equiv 2 \pmod{4}$

Now we allocate the label 1 to the $\frac{3n-4}{2}$ vertices $v_1, v_2, v_3, \dots, v_{\frac{3n-2}{4}}$ and $w_1, w_2, w_3, \dots, w_{\frac{3n-6}{4}}$ then we allocate the label 3 to the $\frac{n-4}{2}$ vertices $v_{\frac{3n+2}{4}}, v_{\frac{3n+6}{4}}, \dots, v_n$ and $w_{\frac{3n-2}{4}}, w_{\frac{3n+2}{4}}, w_{\frac{3n+6}{4}}, \dots, w_n$ subcase 2: $n \equiv 4 \pmod{4}$

Volume 06 Issue 2 2024 DOI 10.6084/m9.figshare.26310024 http://magellanes.com/

Now we allocate the label 1 to the $\frac{3n-4}{2}$ vertices $v_1, v_2, v_3, \dots, v_{\frac{3n-4}{4}}$ and $w_1, w_2, w_3, \dots, w_{\frac{3n-4}{4}}$, then we allocate the label 3 to the $\frac{n-4}{2}$ vertices $v_{\frac{3n}{4}}, v_{\frac{3n+4}{4}}, v_{\frac{3n+8}{4}}, \dots, v_n$ and $w_{\frac{3n}{4}}, w_{\frac{3n+4}{4}}, w_{\frac{3n+8}{4}}, \dots, w_n$. The vertex labeling f is 4- TGMC labeling

n	$t_{mf}(1)$	$t_{mf}(2)$	$t_{mf}(3)$	$t_{mf}(4)$
n is odd	n	n	n	n-1
n is even	n-1	n	n	n

From the above two cases we see that $|t_{mf}(i) - t_{mf}(j)| \le 1$, for all $i, j \in \{1, 2, 3, ..., 4\}$ hence twig graph is 4- total geometric mean cordial (4- TGMC) graph.

Theorem 2.2

For all $n \ge 2$, The lily graph l_n admits 4-TGMC labeling.

Proof:

Let $G = l_n$ be the lily graph with vertex set $V(G) = \{ x, x_i, y_i, s_j, t_j ; 1 \le i \le n-1, 1 \le j \le n \}$. Let x be the centre vertex of G and x_i , y_i $(1 \le i \le n-1)$ be the vertices of first and second copy of path P_n , and s_j , t_j $(1 \le j \le n)$ be the vertices of first and second copy of star $K_{1,n}$, joining the n^{th} vertex of paths to the centre vertex of $K_{1,n}$.

Clearly |V(G)| + |E(G)| = 8n-3.

The function f: $V(G) \rightarrow \{1, 2, 3, 4\}$ defined by

$$f(x) = 3$$

$$f(x_i) = 3 1 \le i \le n - 1$$

$$f(y_i) = 4 1 \le i \le n - 1$$

$$f(s_j) = 1 1 \le j \le n$$

$$f(t_j) = 1 1 \le j \le n - 1$$

$$f(t_n) = 4.$$

Clearly $t_{mf}(1)=t_{mf}(2)=t_{mf}(3)=2n-1$ and $t_{mf}(4)=2n$.

The function f satisfies the condition $|t_{mf}(i) - t_{mf}(j)| \le 1$, for all $i, j \in \{1, 2, 3,, 4\}$ and hence l_n is 4-TGMC graph.

Theorem 2.3

For all $n \ge 2$, The fire crackers graph $P_n \odot S_n$ admits 4-TGMC labeling.

Proof:

Let $G = P_n \odot S_n$ be the fire crackers graph with vertex set $V(G) = \{u_i, v_i, w_i ; 1 \le i \le n\}$ and $E(G) = \{u_i u_{i+1}; 1 \le i \le n-1\} \cup \{u_1 v_i, u_n w_i ; 1 \le i \le n\}$. Let u_i be the vertices of path P_n and v_i , w_i $(1 \le i \le n)$ be the pendant vertices attached to the end vertex of P_n . which has 3n vertices and 3n-1 edges.

The function f: $V(G) \rightarrow \{1, 2, 3, 4\}$ defined by

Case 1: when n is even

Volume 06 Issue 2 2024 ISSN:1624-1940

DOI 10.6084/m9.figshare.26310024 http://magellanes.com/

$$f(u_i) = \begin{cases} 3, & 1 \le i \le \frac{n}{2} \\ 4, & \frac{n+2}{2} \le i \le n \end{cases}$$

$$f(v_i) = 1; \ 1 \le i \le n$$

$$f(w_i) = \begin{cases} 1, & 1 \le i \le \frac{n}{2} \\ 3, & \frac{n+2}{2} \le i \le n \end{cases}$$

Clearly $t_{mf}(1) = t_{mf}(2) = t_{mf}(4) = \frac{3n}{2}$ and $t_{mf}(3) = \frac{3n-2}{2}$.

Case 2: when n is odd

$$f(u_i) = \begin{cases} 3, & 1 \le i \le \frac{n+1}{2} \\ 4, & \frac{n+3}{2} \le i \le n \end{cases}$$
$$f(v_i) = 1; \ 1 \le i \le n$$

$$f(w_i) = \begin{cases} 1, & 1 \le i \le \frac{n-1}{2} \\ 3, & \frac{n+1}{2} \le i \le n \end{cases}$$

Clearly $t_{mf}(1) = t_{mf}(2) = t_{mf}(4) = \frac{3n-1}{2}$ and $t_{mf}(3) = \frac{3n+1}{2}$.

In the above cases we see that $|t_{\rm mf}(i)-t_{\rm mf}(j)| \le 1$, for all $i,j \in \{1,2,3,...,4\}$ and hence $P_n \odot S_n$ is 4-TGMC graph.

Theorem 2.4.

The W graph W_{2n+1} is 4-total geometric mean cordial graph for $n \ge 2$.

Proof

Consider the first and second copies of the star graph $K^1_{1,\,n}$ and $K^2_{1,\,n}$ with an apex vertex x and y. Let $V\left(K^1_{1,\,n}\right)=\{\ x,\ s_1,\ s_2,\ s_3,\s_n\ \}$ and $V\left(K^2_{1,\,n}\right)=\{\ y,\ t_1,\ t_2,\ t_3,\t_n\ \}$. The graph obtained by adjoining s_n and t_1 . Let G be the W graph with 2n+1 vertices and 2n edges.

The function $f: V(G) \rightarrow \{1, 2, 3, 4\}$ defined by

$$f(x) = 1, f(y) = 4$$

$$f(s_i) = \{ 1, \quad 1 \le i \le \frac{n-1}{2} \text{ if n is odd}$$

$$1 \le i \le \frac{n}{2} \text{ if n is even}$$

$$2 \qquad \frac{n+1}{2} \le i \le n \text{ if n is odd}$$

$$\frac{n+2}{2} \le i \le n \text{ if n is even} \}$$

$$f(t_i) = 3, \quad 2 \le i \le n.$$

Then we get $|t_{mf}(i) - t_{mf}(j)| \le 1$ for all $i, j \in \{1, 2, 3, ..., 4\}$.

Hence the function f is 4-total geometric mean cordial labeling and G is 4-TGMC graph.

Theorem 2.5.

The graph P(m, H_n) is 4- total geometric mean cordial labeling for all $m \ge 2$, $n \ge 3$.

Proof:

Volume 06 Issue 2 2024 DOI 10.6084/m9.figshare.26310024 http://magellanes.com/

ISSN:1624-1940

Let $G = P(m, H_n)$, $m \ge 2$, $n \ge 3$ be a graph with vertex set and edge sets are

$$V(P(m, H_n)) = \{ u_i^j v_i^j, 1 \le i \le n; 1 \le j \le m \}$$
 and

$$E(P(m, H_n)) = \{u_i^j u_{i+1}^j, v_i^j v_{i+1}^j, 1 \le i \le n-1; 1 \le j \le m\} \cup$$

$$\{u^{j}_{\frac{n+1}{2}}v^{j}_{\frac{n+1}{2}}\text{, if }n\text{ is odd};\ u^{j}_{\frac{n+2}{2}}v^{j}_{\frac{n}{2}}\text{, if }n\text{ is even}\} \\ \cup \{v_{1}^{\ j}\ v_{1}^{\ j+1}\text{, }1\leq j\leq m-1\}$$

Therefore the graph G has $|V(P(m, H_n))| + |E(P(m, H_n))| = 4mn - 1$

The function f: $V(G) = \{1, 2, 3, 4\}$ defined by the following two cases

Case 1: when n is odd

$$f(u_i^j) = \{ 1 \mid 1 \le i \le \frac{n+1}{2} ; 1 \le j \le m \}$$

2
$$\frac{n+3}{2} \le i \le n$$
; $1 \le j \le m$ }

$$f(v_i^{\ j}) = \{ 4 \ 1 \le i \le \frac{n-1}{2} ; \ 1 \le j \le m \}$$

$$3 \quad \frac{n+1}{2} \le i \le n; \quad 1 \le j \le m \}$$

Case 2: when n is even

$$f(u_i^j) = \{1 \ 1 \le i \le \frac{n}{2}; \ 1 \le j \le m$$

2
$$i = \frac{n+2}{2}$$
; $1 \le j \le m$

$$3 \frac{n+4}{2} \le i \le n; \quad 1 \le j \le m$$

$$f(v_i^j) = \{4 \ 1 \le i \le \frac{n}{2}; \ 1 \le j \le m$$

2
$$\frac{n+2}{2} \le i \le n-1$$
; $1 \le j \le m$

$$1 i = n$$

Clearly $t_{mf}(1) = t_{mf}(2) = t_{mf}(3) = mn$ and $t_{mf}(4) = mn-1$

The above two cases the function f satisfies the condition $|t_{mf}(i) - t_{mf}(j)| \le 1$, for all $i, j \in \{1, 2, 3, ..., 4\}$, and hence $P(m, H_n)$ is 4-TGMC graph.

References:

- [1]. J.A Gallian, A Dynamic survey of graph labeling, The Electronic journal of Combinatorics, 19(2016) #Ds6.
- [2]. F.Harary, Graph Theory, Addition Wesley, New Delhi, 1969
- [3]. I. Cahit, cordial graphs: A weaker version of Graceful and Harmonious graphs, Ars Combin,23(1987),201-207
- [4]. A. Sugumaran and K. Rajesh, Sum Divisor Cordial labeling on Some Classes of graphs, journal of computer and mathematical sciences, vol10(2), 316-325.
- [5]. A. Sugumaran and V. Mohan, Further Results on Prime cordial labeling, Annals of pure and applied mathematics vol 14 no.3,2017,489-496.

Volume 06 Issue 2 2024 DOI 10.6084/m9.figshare.26310024 http://magellanes.com/

ISSN:1624-1940

- [6]. S. Shenbaga Devi and A. Nagarajan, Near skolem difference mean labeling of special types of trees International journal of mathematics trends and technology vol 52 no-7. (2017).
- [7]. R. Ponraj, S. Subbulakshmi, S. Somasundaram, k-Total mean cordial graphs, J.Math.comput.sci,10(2020), no.5, 1697-1711
- [8]. L.Vennila, P.Vidhyarani, k-Total geometric mean cordial labeling of some graphs, Journal of Research in Applied Mathematics vol 10- issue 2 (2024) pp: 28-34.
- [9]. L.Vennila, P.Vidhyarani, 4-Total geometric mean cordial labeling of star related graphs, Tuijin Jishu/ Journal of Proplusion Technology vol. 44 no.6 (2023).
- [10]. L.Vennila, P.Vidhyarani, 4-Total geometric mean cordial labeling of some disconnected graphs, Tuijin Jishu/ Journal of Proplusion Technology vol. 44 no.6 (2023).