
CAHIERS MAGELLANES-NS 
Volume 06 Issue 2 
2024 

ISSN:1624-1940 

 DOI 10.6084/m9.figshare.26310350 
http://magellanes.com/  

 

    1647  

A DERIVATION OF MULTISTEP IMPLICIT-METHOD WITH THIRD DERIVATIVE FOR 
SOLVING FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS 

 
Mohammed Mahmood Salih 1* Mohammed Yousif Turki2 & Mohammed S. Mechee3 

1 Faculty of Information Technology Ninevah-University, Mosul, Iraq, 
2 Dept. of Math., Faculty of Education for Pure Sciences, University of Anbar, Iraq. 

3 Information Technology Research and Development Center, University of Kufa., Iraq. 
Corresponding E-mail Address:   Mohammed Mahmood Salih 

 
Abstract 
 First-order linear or nonlinear ordinary differential equations (ODEs) can be solved with the 
help of single-step or multistep numerical methods. This paper discusses multistep numerical methods. 
With the goal of producing a more efficient multistep numerical method, this work will construct a 
general implicit method (GI3SM) with a third derivative to directly solve the general category of quasi-
linear first-order Ordinary Differential Equations (ODEs), which is expressed as 𝜓ᇱ(𝜒) = 𝜙(𝜒, 𝜓(𝜒)). 
The necessary Hermite interpolating polynomials with (GI3SM) have been derived in three steps (IVPs) 
in order to implement the new efficient multistep numerical technique. A multi-step method is 
developed for solving this problem, provided that the numerical approximation at three steps is 
acceptable. To complete the derivation of the multistep implicit method for solving ordinary differential 
equations of the first order by adding a third derivative. To evaluate the effectiveness of the process, we 
have looked at four tested examples. The accuracy and efficacy of the suggested method are contrasted 
to Classical RK and Euler numerical methods with the exact solutions to these problems using the 
numerical solutions of the implementations. In addition to studying the order and zero-stability of the 
proposed method, a number that of characteristics have also been established. The implicit multistep 
proposed method (GI3SM) yields result that are in good agreement with analytical solutions when 
compared to the classical RK and Euler methods. Additionally, the (GI3SM) generates exact numerical 
answers for the test problems. 
Keyword: Multistep-Method; Implicit-Method; IVPs; ODEs; Three-steps method; Order; RK; First-
order; Quasi-linear. 

1. Introduction 

One of the most significant mathematical tools to recognize physical phenomena is the 
differential equation (DE). Applied mathematics is used significantly in many domains, such as 
biology, engineering, physics, economics, chemistry, and medicine. DEs are used to build 
mathematical models for specific problems in the fields of applied science and engineering. 
Mathematicians' brains and intelligence is currently being challenged by the difficulty of finding 
numerical or analytical solutions to some classes of DEs of various forms. Currently, the growth of 
current numerical approaches is of more interest to mathematicians, physicists, and engineers. 
Several methods are currently in use to find or examine the solutions of mathematical models with 
first-order initial value problems (IVPs), which are included below: [1] developed a general implicit-
block technique for fifth-order ODEs that uses two  points and further derivatives, [2] developed an 
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explicit embedded pair RK method(TFRKF6(5)) to estimate the approximate solution of the 
oscillatory first-order IVPs to estimate the approximate solution of the oscillatory first-order IVPs  
while [3] evaluated single-step RK approaches with unique qualities before studying the issues with 
pronounced oscillatory behavior that frequently occur in quantum and celestial physics. In addition 
to talking about implicit approaches, stability analysis, error estimation techniques, and dense 
output. A historical overview of RK methods was provided by [4], who also highlighted the early 
contributions of Runge, Heun, Kutta, and Nyström, which gave rise to the idea of the order of the 
accuracy of RK approaches. and [5] investigated at implicit Runge-Kutta processes (IRK). 
Furthermore, a new explicit RK-technique with two algebraic orders with dispersion and dissipation 
was introduced by [6]. For the purpose of [7] investigation into the dynamics of a continuous-time 
system described by an ODE that integrated to obtain trajectories. Lastly, for some problems of 
various orders, [8,9,10,1,11,12,13] developed multistep numerical algorithms. A brand-new implicit 
block approach with a three-point second derivative has been given forward in this study. In order 
to increase the accuracy of approximation solutions to IVPs, (GI3SM) is constructed by adding the 
first derivative of 𝜓(𝜉, 𝜂(𝜉)) using Hermite polynomials. To generate more accurate and 
comprehensive numerical outputs, the IVP formula employs more derivatives. The applications of 
several first-order IVP problems are also examined, and the results reveal that the suggested 
approach has highly good results. As a result, the proposed (GI3SM) technique generates more 
precise the test problems' numerical solutions as opposed to merely Traditional RK and Euler 
methods, which are quite compatible with the analytical results. In order to demonstrate the value 
of the (GI3SM) method, a few test examples have been solved. The numerical outcomes were also 
as opposed to equivalent numerical outcomes attained with the already-in-use RK and Euler 
methods. The efficacy and precision of the suggested approach are numerically contrasted alongside 
the more common Rung-Kutta method and Euler method. To achieve remarkable numerical results 
for the new three-step methodology, applications of IVPs are also introduced. The numerical test 
issue solutions obtained by applying the RK and Euler methods closely agree with those obtained 
by the proposed (GI3SM) method. 
2. Quasi-Linear First-Order ODEs 

In this section, a quasi-linear, first-order ODEs is studied. The family of general quasi-linear, 
first-order ODEs is given by the following form: 

𝜔ᇱ(𝜁) = 𝜓൫𝜁, 𝜔(𝜁)൯,                          𝜁଴ ≤ 𝜁 ≤ 𝜁ଵ,                              (1) 

 
Where, 

𝜓: ℜ × ℜே → ℜே , 𝜔(𝜉) = [𝜔ଵ(𝜁), 𝜔ଶ(𝜁), ….  , 𝜔ே(𝜁)] 
and 

𝜓൫𝜁, 𝜔(𝜁)൯ = (𝜓௞(𝜁, 𝜔௜(𝜁))), 

for 𝑘, 𝑖 = 1,2, … , 𝑁. 
3. Derivation of The Method 

For the purpose of solving first-order ODEs, we presented the derivation of the three-step 
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implicit multistep approach with third derivatives in this section (IVPs). This work develops a three-
step approach for addressing first-order initial value problems with a third derivative (IVPs): 

𝜓ᇱ(𝜁) = 𝑓൫𝜁, 𝜓(𝜁)൯, 𝜓(𝑎) = 𝜓଴,           𝑎 ≤ 𝜁 ≤ 𝑏                    (2) 

The second- and third-derivatives for Equation (2) with respect to 𝜁 can be written as 

𝜓ᇱᇱ(𝜁) = 𝑓ᇱ൫𝜁, 𝜓(𝜁)൯ = 𝑓఍൫𝜁, 𝜓(𝜁)൯ + 𝑓൫𝜁, 𝜓(𝜁)൯𝑓ట൫𝜁, 𝜓(𝜁)൯ = 𝑔൫𝜁, 𝜓(𝜁)൯          (3) 

𝜓ᇱᇱᇱ(𝜁) = 𝑓ᇱᇱ൫𝜁, 𝜓(𝜁)൯

= 𝑓఍఍൫𝜁, 𝜓(𝜁)൯ + 2𝑓൫𝜁, 𝜓(𝜁)൯𝑓఍൫𝜁, 𝜓(𝜁)൯ + 𝑓ଶ൫𝜁, 𝜓(𝜁)൯𝑓టట൫𝜁, 𝜓(𝜁)൯

+ 𝑓఍൫𝜁, 𝜓(𝜁)൯𝑓ట൫𝜁, 𝜓(𝜁)൯ + 𝑓൫𝜁, 𝜓(𝜁)൯𝑓టట൫𝜁, 𝜓(𝜁)൯

= 𝑘൫𝜁, 𝜓(𝜁)൯                              (4) 

The proposed method is derived from Hermite's interpolating polynomial P, which has been 
defined as follows: 

𝑃(𝜁) = ෍ ෍ 𝑓௜
(௞)

௠೔షభ

௞ୀ଴

𝐿௜,௞(𝜁)

௡

௜ୀ଴

                                                     (5) 

where 𝜁௜ = 𝑎 + 𝑖ℎ and 𝑓௜ = 𝑓(𝜁௜) for 𝑖 = 0,1, … . . , 𝑛 where ℎ =
௕ି௔

௡
 , and n = positive integer 

number and 𝐿௜,௞(𝜁) is an arbitrary generalized Lagrange polynomial, 𝑖 = 0,1, … . , 𝑛, 𝑘 = 0,1, … . , 𝑚. 

Integrating (2) over the interval [𝜁௡, 𝜁௡ାଷ] gives: 

න 𝜓ᇱ(𝜁)𝑑𝜁
఍೙శయ

఍೙

= න 𝑓(𝜁, 𝜓(𝜁))𝑑𝜁
఍೙శయ

఍೙

                                    (6) 

𝜓(𝜁௡ାଷ) = 𝜓(𝜁௡) + න 𝑓(𝜁, 𝜓(𝜁))𝑑𝜁
఍೙శయ

఍೙

                              (7) 

When 𝑓(𝜁, 𝜓(𝜁)) in (7) is replaced by the Hermite interpolating polynomial in Reference 2 𝑑𝑥 =

ℎ𝑑𝑠, and the integration limit is changed from -3 to 0 in (7), the following results are obtained: 

𝜓(𝜁௡ାଷ) = 𝜓(𝜁௡) + න ቎෍ ቀ𝑓௜𝐿௜,଴(𝑠)ቁ + ෍(𝑔௝𝐿௝,ଵ(𝑠) + 𝑘௝𝐿௝,ଶ(𝑠))

ଷ

௝ୀ଴

ଷ

௜ୀ଴

቏ ℎ𝑑𝑠
଴

ିଷ

                  (8) 

where 𝑖 = 0,1,2,3, 𝑗 = 0,3 and 

𝐿଴,଴(𝑠) = 𝑠ଷ(𝑠 + 1)(𝑠 + 2) ቆ−
1

54
−

5(𝑠 + 3)

108
−

47(𝑠 + 3)ଶ

648
ቇ, 

𝐿ଵ,଴(𝑠) = (𝑠 + 1) ቆ
𝑠(𝑠 + 3)

2
ቇ

ଶ

, 

𝐿ଶ,଴(𝑠) = −(𝑠 + 2) ቆ
𝑠(𝑠 + 3)

2
ቇ

ଷ

, 

𝐿ଷ,଴(𝑠) = (𝑠 + 1)(𝑠 + 2)(𝑠 + 3)ଷ ቆ
1

54
−

5𝑠

108
+

47𝑠ଶ

648
ቇ, 

𝐿଴,ଵ(𝑠) = −ℎ𝑠ଷ(𝑠 + 1)(𝑠 + 2)(𝑠 + 3) ቆ
1

54
+

5(𝑠 + 3)

108
ቇ, 
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𝐿ଷ,ଵ(𝑠) = ℎ𝑠(𝑠 + 1)(𝑠 + 2)(𝑠 + 3)ଷ ൬
1

54
−

5𝑠

108
൰, 

𝐿଴,ଶ(𝑠) = −
ℎଶ

108
𝑠ଷ(𝑠 + 1)(𝑠 + 2)(𝑠 + 3)ଷ, 

𝐿ଷ,ଶ(𝑠) =
(ℎ𝑠)ଶ

108
(𝑠 + 1)(𝑠 + 2)(𝑠 + 3)ଷ. 

The integrals in (8) are evaluated. The three-step implicit multistep block method's formula is 
generated by MAPLE and is as follows: 

𝜓௡ାଷ = 𝜓௡ +
ℎ

1120
(2(1173𝑓௡ + 2187𝑓௡ାଵ + 2187𝑓௡ାଶ + 1173𝑓௡ାଷ) + 117ℎ(𝑔௡ − 𝑔௡ାଷ)

+ 9ℎଶ(𝑘௡ + 𝑘௡ାଷ)                                                      (9) 
4. The Order of the GI3SM Method 

The order of the three-step implicit multistep technique that this paper has derived is established 
in this section. The local truncation error related to the normalized form of the new technique able 
to ascertain with the operator for linear difference, as per the research findings of Fatunla [1] and 
Lambert [2]. 

𝐿[𝑍(𝜁); ℎ] = ෍[𝛼௜𝑍(𝜁 + 𝑖ℎ) − ℎ𝛽௜𝑍
ᇱ(𝜁 + 𝑖ℎ) − ℎଶ𝛾௜𝑍

ᇱᇱ(𝜁 + 𝑖ℎ) − ℎଷ𝛿௜𝑍′′′(𝜁

௞

௜ୀ଴

+ 𝑖ℎ)],                                    (10) 
 If 𝑍(𝜁) is adequately differentiable, the terms in (10) can be expanded as a Taylor series focused 
on the point 𝜁 to yield the formula. 

𝐿[𝑍(𝜁); ℎ] = 𝐶଴𝑍(𝜁) + 𝐶ଵℎ𝑍ᇱ(𝜁) + ⋯ + 𝐶௣ℎ௣𝑍(௣)(𝜁) where 𝐶௣ is a constant coefficient and 𝑝 =

0,1, … are listed below: 

𝐶଴ = ෍ 𝛼௟

௞

௟ୀ଴

 

𝐶ଵ = ෍(𝑙𝛼௟ − 𝛽௟)

௞

௟ୀ଴

 

𝐶ଶ = ෍
𝑙ଶ

2!
𝛼௟ − ෍ 𝑙𝛽௟

௞

௟ୀ଴

௞

௟ୀ଴

− ෍ 𝛾௟

௞

௟ୀ଴

 

. 

. 

. 

𝐶௣ =
1

𝑝!
෍ 𝑙௣𝛼௟ −

1

(𝑝 − 1)!

௞

௟ୀ଴

෍ 𝑙௣ିଵ𝛽௟

௞

௟ୀ଴

−
1

(𝑝 − 2)!
෍ 𝑙௣ିଶ𝛾௟ −

1

(𝑝 − 3)!

௞

௟ୀ଴

෍ 𝑙௣ିଷ𝛿௟

௞

௟ୀ଴

 

According to Henrici [3] we say that the proposed method of order p if  𝐶௣ାଵ ≠ 0 and 𝐶௞ = 0 where 

𝑘 = 0,1,2, … , 𝑝. However, the error constant is 𝐶௣ାଵ and the main local truncation error at the point 
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𝑥௡ = 𝐶௣ାଵℎ௣ାଵ𝑍(௣ାଵ)(𝑥௡). However, the 3-step implicit multistep method has order p = 10 and error 

constant 𝐶ଵଵ = −
ଶ଻

଺଼ଽଽଶ଴଴଴
 . 

5. Numerical Results 

This section involves applying the proposed methods combined with the classical RK and Euler 
methods to solve a set of quasi-linear first-order ODEs. Three numerical solutions versus exact 
solutions are compared in Figure 1 to show which is the closest match. Following are some notation 
examples: 

 Step: Step-size used. 

 GI3SM: Proposed method. 

 RK: Runge-Kutta method. 

 Euler: Euler method. 
 

6. Implementations 

This section implies solutions to four problems, the numerical outcomes of which are displayed 
in Figure 1. 

 
Example 6.1. (Homogenous-Linear ODE) Consider 

𝜑ᇱ(𝜏) = 𝜑(𝜏)                         0 < 𝜏 ≤ 1. 
with the initial condition (IC): 𝜑(0) = 1 and the analytical-solution is 𝜑(𝜏) = 𝑒ఛ . 
 
Example 6.2. (Non-Homogenous-Linear ODE) Consider 

𝜑ᇱ(𝜏) = 𝜔(𝜏) + cos(𝜏) − sin(𝜏)                         0 < 𝜏 ≤ 1. 
with IC: 𝜑(0) = 0 and the analytical-solution is 𝜑(𝜏) = sin(𝜏) . 
 
Example 6.3. (Non-Linear ODE) Consider 

𝜑ᇱ(𝜏) = −𝜑ଶ(𝜏)                       0 < 𝜏 ≤ 1. 

with IC: 𝜑(0) = 1 and the analytical-solution is 𝜑(𝜏) =
ଵ

ଵାఛ
 . 

 
Example 6.4. (Non-Constant Coefficients ODE) Consider 

𝜑ᇱ(𝜏) = −2𝜏𝜑(𝜏)                       0 < 𝜏 ≤ 1. 

with IC: 𝜑(0) = 1 and the analytical-solution is 𝜑(𝜏) = 𝑒ିఛమ
 . 
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Figure 1: A Comparison of Numerical Solutions of Proposed Method Versus Numerical Solutions of 
Classical RK and Euler Methods with Exact Solution for the Examples 1,2,3 and 4. 

7. Conclusion and Discussion 

The general implicit block method (GI3SM) has been developed in this study to solve the general 
class of quasi-linear first-order ODEs using the Hermite approximation technique. The approach is 
called (GI3SM). For the general class of first-order ODEs, this article's objective is to demonstrate 
a direct-implicit block solution approach. Comparisons between the numerical solutions produced 
by the proposed (GI3SM) technique and those produced by the (GI3SM) method for the same order 
have been made. By comparing the two approaches, we can say that the new (GI3SM) method 
surpasses the classical RK and Euler methods across a range of advantages. The implementation's 
findings enable us to come to the conclusion that the proposed method is a good one for 
computation, required less function evaluation and is more time- and cost-effective. 
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