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1. Introduction 
Hernendoz and et al [1] ascertained the state- dependent delay condition by employing first order partial 
differential equations and abstract differential equations in the study publications of [2]. Subsequently, 
a scrutiny of the fore stated research and contemporary endeavors provided by Kristin et .al [3] has been 
focused. A variation application of the calculus of variation is the configuration of the differential 
equation of second order system. The research of state-dependent delays involving partial differential 
equations of second order and abstract differential equation, has been effectively exposed through the 
review of literature for references, see [4 − 6]. 

The correlations between the disquisition of the cited articles [7-11] and the illustration of differential 
equations enumerated in definite spatial position by Aiello, Freedman and Wu [12] are additionally 
ascertained. Inspite of that S.M.Ulam defied the problem of stable functional equations in 1940. A 
multitude of mathematicians [ 22-23] have made an intensive exploration on the stability problems with 
functional equations, since the introduction and the identification of the problem concerned. 

In 1978, M.Rassias besowed the Generalized Hyer-Ulam Stability (also termed as Hyers-Ulam-Rassias 
Stability-HURS) of this Hyers Ulam Stability [24]. Consequently, numerous researchers initiated their 
research on the Hyers-Ulam Stability (HUS) of functional equation and differential equations, which 
ended up in the incredible and in dispensable progress, which is currently witnessed. As a result, ample 
numbers of authors [25-34] and even more have successfully carried out extensive research on the HUS. 

Occasionally termed as the HURS of first order, higher order, and fractional order differential equations. 
Correspondingly, the research on the HUS has attained a prominent position in the arena of 
mathematics. 
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In 2018, E. Hernández et.al. [13] proved the existence and uniqueness of solution for the following 
problem. 

𝑦ᇱᇱ(𝜏)  = 𝔄𝑦(𝜏) + ℱ൫𝜏, 𝑦ఘ(ఛ,௬ഓ)൯,  𝜏 ∈ [0, 𝔟] (1)

𝑦  = 𝛽 ∈ ℬ = 𝐶([−𝛾, 0]; 𝑋), 𝑦ᇱ(0ା) = 𝑥 ∈ 𝑋 (2)
 

Let (𝑋, | ⋅ |) be a Banach space. Define 𝐵: 𝑈 → 𝑋 is a bounded and linear operator, here U is a Banach 
space and denotes the infinitesimal generator of a strongly continuous cosine function of bounded linear 
operators (𝒞(𝜏))ఛ∈ℝ on (𝑋, | ⋅ |) and ℱ(⋅), 𝜌(⋅) are appropriate functions; the function 𝑦ఛ: (−∞, 0] →

𝑋, 𝑦ఛ(𝜃) = 𝑦(𝜏 + 𝜃), is a member of particular abstract state space ℬ termed clearly; 0 < 𝜏ଵ < ⋯ <

𝜏 < 𝔟 are annexed numbers; 𝜌: 𝒥 × ℬ → (−∞, 𝔟] is a suitable function. 

The stat-dependent delay and stability of the abstract differential system is considered as the captivating 
and compelling concept of current investigation. The pre-illuminant purpose of this research is to 
successfully analyze the stability of the foretasted problem by applying HUS and HURS. 

2. Preliminaries 
Let (𝒱, | ⋅ |𝒱) and (𝒲, | ⋅ |𝔚) represents Banach spaces. Let | ⋅ |ℒ(𝒱,𝔚) denotes a space of linear and 

bounded operator norm function, ℒ(𝔙, 𝔚): 𝔳 → 𝔚. 

The space 𝔈 = {§ ∈ 𝑋: 𝒞(⋅)§ is continuosly differentiable } awarded into the norm |𝑥|𝔈 = |§| +

supஸఛஸ  |𝒜𝒮(𝜏)§|. From the literature of Kisiński [21], since 𝔈 is a Banach space, 𝒜𝒮(𝜏) ∈ ℒ(𝔈, 𝑋) 
for every 𝜏 in the real line ℝ and if 𝑠 converges to 0 then 𝒜𝒮(𝑠)§ converges to 0, for every § ∈ 𝔼. 

Using the references from the articles, we can comprehend the abstract Cauchy problem of second order 
and cosine functions better [21]. Let 𝐶([𝑝, 𝑞]; 𝑋) and 𝐶([𝑝, 𝑞]; 𝒱) be normally defined spaces and 

its norms are denoted as | ⋅ |([,];) and | ⋅ |ಽ([,];) respectively. We termed that 

| ⋅ |ಽ([,];) = | ⋅ |([,];𝒰) + [⋅]ಽ([,];𝔘) 

where [𝜉]ಽ([,];𝒱) = supఛ,௦∈[,],௦ஷఛ  
|క(௦)ିక(ఛ)|𝓋

|ఛି௦|
 and using the state-dependent delay from [16]. 

Lemma 2.1. [16, Lemma 1]  

Suppose 𝑦, 𝑧 ∈ 𝐶([−𝛼, 𝑎]; 𝑋),0 < 𝑎 ≤ 𝑏, the function 𝜌(⋅) belongs to 𝐶Lip ([0, 𝑏] ×

ℬ; ℝା), 𝑦[,], 𝑧[,] ∈ 𝐶Lip ([0, 𝑎]; 𝑋), 𝑦 = 𝑧 = 𝜗 ∈ 𝐶Lip ([−𝛼, 0]; 𝑋), and 𝜌(𝜏, ℎఛ) ≤ for 𝜂 = 𝑦, 𝑧 and 

every 𝜏 ∈ [0, 𝑎]. 
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ൣ𝑦ఘ(⋅,௬(⋅)൯൧
ಽ([,];ℬ)

≤ ൣ𝑦(⋅)൧
ಽ([,];ℬ)

[𝜌]ಽ൫[,]×ℬ;ℝశ൯ ൬1 + ൣ𝑦(⋅)൧
ಽ([,];ℬ)

൰ (3)

ቚ𝑦ఙ൫⋅,௬(⋅)൯ − 𝑧ఙ(⋅,௭(⋅)ቚ
([,];ℬ)

(4)

 ≤ ൬1 + ൣ𝑧(⋅)൧
ಽ([,];ℬ)

[𝜌]ಽ൫[,]×ℬ;ℝశ൯൰ |𝑦 − 𝑧|([,];) (5)

 

The presence and originality of the answer are first investigated. The validity of the problem is then 
shown (1)-(2). First, we outline the modest and conventional approach to (1)-(2). 

Definition 2.1. [13]  

The mild solution function 𝑦 ∈ 𝐶([0, 𝑎]; 𝑋) of (1)-(2) on [−𝛼, 𝑎], when 0 < 𝑎 ≤ 𝑏, is defined by 

𝑦(𝜏) = 𝒞(𝜏)𝛽(0) + 𝒮(𝜏)𝑥 + න  
ఛ



𝒮(𝜏 − 𝑠)𝒢൫𝑠, 𝑦ఘ(௦,௬ೞ)൯𝑑𝑠 

for all 𝜏 ∈ [0, 𝑎] and if 𝑦 = 𝛽. 

Now, we may acquire the initial primary result. 

Theorem 2.1. [6]  

Let (𝑋, 𝑑) be a generalised complete metric space. Assume that Φ: 𝑋 → 𝑋 is a lipschitz-constant strictly 
contractive operator 𝐿 < 1, If there exists a nonnegative integer 𝑘 such that 𝑑(Φାଵ𝑥, Φ) < ∞ for 
some 𝑥 ∈ 𝑋, then the following are true: 

(a) The sequence {Φ𝑥} converges to a fixed end point 𝑥∗ of Φ. 

(b) 𝑥∗ is the unique fixed point of Φ in 𝑋∗ = {𝑦 ∈ 𝑋/𝑑(Φ𝑥, 𝑦) < ∞}. 

(c) If 𝑦 ∈ 𝑋∗, then 𝑑(𝑦, 𝑥∗) ≤
ଵ

ଵି
𝑑(Φ𝑦, 𝑦). 

3. Hyers-Ulam-Rassias Stability and Hyers-Ulam Stability 
This section's primary objective is to investigate the Hyers-Ulam-Rassias stability (H-U-R-S) and 
Hyers-Ulam stability of the second order differential equation (H-U-S) (1)-(2). 

Theorem 3.1. [13]  

Let us assume that 𝜌 ∈ 𝐶Lip ([0, 𝑏] × ℬ; ℝା), 𝜌(0, 𝑣) = 0 and a non-negative number 𝑟∗ exists and 0 <

𝑎∗ ≤ 𝑏 provides 0 ≤ 𝜌(𝜏, 𝜗) ≤ 𝜏 for every 𝜏 ∈ [0, 𝑎∗] and 𝜗 ∈ 𝐵∗(𝛽, ℬ). Also, 𝛽 ∈

𝐶Lip ([−𝛼, 0]; 𝑋), 𝒞(⋅)𝛽(0) ∈ 𝐶Lip ([0, 𝑎]; 𝑋) and 𝒢 ∈ 𝐶Lip ([0, 𝑏] × ℬ; 𝑋) holds. Then exactly one mild 

solution 𝑦 ∈ 𝐶Lip ([−𝛼, 𝑎]; 𝑋) of problem (1)-(2) on [−𝛼, 𝑎] for any 0 < 𝑎 ≤ 𝑏, exists. 
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Proof:  

Let 𝑑∗ and 𝑟∗ be defined in condition 𝐇ఘ,௩. Let ℛ > 0 be sufficient and it satisfies that ℛ >

[𝛽]ಽ([ିఈ,];) + [𝒞(⋅)𝑣(0)]ಽ([,];) + 𝐶|𝑥|. Let us consider ℛ𝑎 ≤ 𝑟∗ when 0 < 𝑎 < min{𝑏, 𝑑∗, 1} 

and 

𝐶𝑎ଶ𝐿 ቀ1 + ℛ[𝜌]ಽ൫[,]×ℬ;ℝశ൯ < 1, (6)

[𝒞(⋅)𝛽(0)]ಽ([,];) + 𝐶|𝑥| + 2𝑎𝐶 ቆ𝐿𝑟∗ + sup
ఛ∈[,]

 |𝒢(𝜏, 𝛽)|ቇ ≤ ℛ. (7)

𝒢𝑦(𝜏) = 𝒞(𝜏)𝛽(0) + 𝒮(𝜏)𝑥 + න  
ఛ



 𝒮(𝜏 − 𝑠)𝒢൫𝑠, 𝑦ఘ(௦,௬ೞ)൯𝑑𝑠. (8)

 

Let 𝑦 ∈ 𝒴(𝑎, ℛ). By the Lemma 2.1 and the selection of ℛ, we get, 

ห𝒢൫𝑠, 𝑦ఘ(௦,௬ೞ)൯ห ≤ ห𝒢൫𝑠, 𝑦ఘ(௦,௬ೞ)൯ − 𝒢(𝑠, 𝛽)ห + |𝒢(𝑠, 𝛽)|

ห𝒢൫𝑠, 𝑦ఘ(௦,௬ೞ)൯ห ≤ 𝐿ห𝑦ఘ(௦,௬ೞ) − 𝛽ห + sup
ఛ∈[,]

 |𝒢(𝜏, 𝛽)|  

Using (8), for all 𝜏 ∈ [0, 𝑎) and 𝜏 + 𝜂 ∈ [0, 𝑎], for 𝜂 > 0, 

|𝒢𝑦(𝜏 + 𝜂) − 𝒢𝑦(𝜏)| ≤[ℰ(⋅)𝛽(0)]ಽ([,];)𝜂 + 𝐶|𝑥|𝜂 + 𝐶𝜂 sup
௦∈[,]

 ห𝒢൫𝑠, 𝑦ఘ(௦,௬ೞ)൯ห𝑎

|𝒢𝑦(𝜏 + 𝜂) − 𝒢𝑦(𝜏)| +𝐶𝑎 sup
௦∈[,]

 ห𝒢൫𝑠, 𝑦ఘ(௦,௬ೞ)൯ห𝜂
 

this indicates that [ℰ𝑦]ಽ([,];) ≤ ℛ. Furthermore, we know that (𝒢𝑦) = 𝛽, 𝛽 ∈ 𝐶([−𝛾, 0]; 𝑋) 

and ℛ > [𝛽]ಽ([ିఊ,];), from Lemma 2.1 we obtain that 𝒢𝑦 ∈ 𝐶Lip ([−𝛾, 𝔞]; 𝑋) and [𝒢𝑦]ಽ([ିఊ,𝔞];) ≤

ℛ, which shows that 𝒢 is a 𝒴(𝔞, ℛ)-valued function. 

Contrarily, the Lemma's conclusion was achieved 2.1 and for every 𝑦, 𝑧 ∈ 𝑦(𝑎, ℛ) and 𝜏 ∈ [0, 𝑎] gives, 

|𝒢𝑦(𝜏) − 𝒢௭(𝜏)| ≤ න  
ఛ



 𝐶𝑎𝐿ห𝑦ఘ(௦,௬ೞ) − 𝑧ఘ(௦,௭ೞ)ห
ℬ

𝑑𝑠

|𝒢𝑦(𝜏) − 𝒢௭(𝜏)| ≤ 𝐶𝑎ଶ𝐿 ቀ1 + ℛ[𝜌]ಽ൫[,]×ℬ;ℝశ൯ቁ 𝑑(𝑦, 𝑧)

 

which exhibits the contraction map 𝒢, which denotes the unique solution to (1)-(2) on the interval [0, 𝑎] 
such that 𝑦 ∈ 𝐶([−𝛼, 𝑎]; 𝑋). 

Theorem 3.2 (Hyers-Ulam-Rassias Stability(H-U-R-S)).  

Consider the closed interval 𝐼ோ = [0, 𝑏]. Let 𝜅ଵ, 𝐶 and 𝐿 be non-negative constants with the condition 
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0 < 𝜅ଵ𝐶𝑎ଶ𝐿 ቀ1 + ℜ[𝜎]([0, 𝑏] × 𝐵; 𝑅ା)ቁ < 1.  

Proof: 

Assume that the function 𝐹: [0, 𝑏] × ℜ → ℜ is continuous and satisfying the Lipschitz condition 

|𝐹(𝜏, 𝑦ఙ) − 𝐹(𝜏, 𝑧ఙ)| ≤ 𝐿൫1 + [𝑧]୧୮ ([ିఈ,];)[𝜎]୧୮ ([,]×;ோ)൯|𝑦 − 𝑧|ீ([ିఈ;],) (9) 

for each 𝜏 ∈ 𝐼ோ and 𝑦, 𝑧 ∈ ℜ. If 𝐹: [0, 𝑏] → ℜ is a continuously differentiable function satisfies 

ห𝑦ᇱᇱ − 𝐴𝑦(𝜏) − 𝐹൫𝜏, 𝑦ఙ(ఛ,௬ഓ)൯ห ≤ 𝜗(𝜏) (10) 

∀𝜏 ∈ [0, 𝑏], and 𝜗: [0, 𝑏] → (0, ∞) is a continuous function with the inequality 

ቤන  
ఛ



  (𝜏 − 𝑡ଵ)𝜗(𝜏ଵ)𝑑𝑡ଵቤ ≤ 𝜅ଵ𝜗(𝜏) (11) 

∀𝜏 ∈ [0, 𝑏], then there is a unique continuous function 𝑦: [0, 𝑏] → ℜ such that 

𝑦(𝜏) = 𝐶(𝜏)𝛽(0) + 𝜹(𝜏) + න  
ఛ



 𝛿(𝜏 − 𝑠)𝐹൫𝑠, 𝑦ఙ(௦,௬ೞ)൯𝑑𝑠 (12) 

and 

|𝑦(𝜏) − 𝑦(𝜏)| ≤
𝜅ଵ

1 − 𝜅ଵ𝐶𝑎ଶ𝐿൫1 + ℜ[𝜎]([,]×;ோశ)൯
𝜗(𝜏) ∀𝜏 ∈ 𝐼ோ (13) 

Proof: Define a set 

Φ = {𝑦: [0, 𝑏] → [−𝛼, 𝑏] ∣ 𝑦 is continuous } (14) 

equipped with generalized complete metric 

𝑑(𝑦, 𝑧) = inf൛𝐶 ∈ [0, ∞]| |𝑦(𝜏) − 𝑧(𝜏) ∣≤ 𝐶௬௭𝜗(𝜏),  ∀𝜏 ∈ [0, 𝑏]ൟ (15) 

Define an operator Ψ: Φ → Φ by 

(Ψ𝑦)(𝜏) = 𝐶(𝜏)𝛽(0) + 𝛿(𝜏) + න  
ఛ



 𝛿(𝜏 − 𝑠)𝐹൫𝑠, 𝑦ఙ(௦,௬ೞ)൯𝑑𝑠 (16) 

for each 𝑦 ∈ Φ. 

We noticed that Ψ is well defined because both 𝐹 and 𝑦 are continuous functions. 
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In order to reach our goal, we must first prove that Ψ is strictly contractive operator on Φ. 

For any 𝑦, 𝑧 ∈ Φ, assume 𝐶௬௭ ∈ [0, ∞] is arbitrary constant such that 𝑑(𝑦, 𝑧) ≤ 𝐶௬௭. 

(i.e) from (15) we have 

|𝑦(𝜏) − 𝑧(𝜏)| ≤ 𝐶௬௭𝜗(𝜏) (17) 

∀𝜏 ∈ [0, 𝑏]. 

From the conditions (9), (11), (14), (15) and (17), we have 

|(Ψ𝑦)𝑡 − (Ψ𝑧)𝑡| ≤ න  
ఛ



 𝐶𝑎𝐿ห𝑦ఙ(௦,௬ೞ) − 𝑧ఙ(௦,௭ೞ)ห𝑑𝑠

(Ψ𝑦)𝑡 − (Ψ𝑧)𝑡| ≤ 𝜅ଵ𝐶𝑎ଶ𝐿 ቀ1 + ℜ[𝜎]൫[,]×;ோశ൯ቁ 𝐶௬௭𝜗(𝜏)

 

for all 𝜏 ∈ [0, 𝑏]. That is 

𝑑(Ψ𝑦, Ψ𝑧) ≤ 𝜅ଵ𝐶𝑎ଶ𝐿 ቀ1 + ℜ[𝜎]൫[,]×;ோశ൯ቁ 𝐶௬௭𝜗(𝜏) 

Hence we can conclude that 

𝑑(Ψ𝑦, Ψ𝑧) ≤ 𝜅ଵ𝐶𝑎ଶ𝐿 ቀ1 + ℜ[𝜎]൫[,]×;ோశ൯ቁ 𝑑(𝑦, 𝑧) 

for any 𝑦, 𝑧 ∈ Φ. 

From (15) and (17), it follows that for any arbitrary 𝑔 ∈ Φ, there is a constant 𝐶 such that 0 < 𝐶 < ∞ 
with 

|(Ψ𝑦)(𝜏) − 𝑦(𝜏)| = ቤ𝐶(𝜏)𝛽(0) + 𝛿(𝜏) + න  
ఛ



 𝛿(𝜏 − 𝑠)𝐹൫𝑠, 𝑦ఙ(௦,௬ೞ)൯𝑑𝑠 − 𝑦(𝜏)ቤ

|(Ψ𝑦)(𝜏) − 𝑦(𝜏)| ≤ 𝐶𝜗(𝜏)

 

∀𝜏 ∈ [0, 𝑏], since 𝐹(𝜏, 𝑦(𝜏)) and 𝑦(𝜏) are bounded in the interval [0, 𝑏] and minఛ∈[,]  𝜗(𝜏) > 0. 

Thus (16) it means that 

𝑑(Ψ𝑦, 𝑦) < ∞ 

As a result, by theorem (2.1), there is a continuous function 𝑓: [0, 𝑏] → ℜ so that Ψ𝑦 → 𝑓 in (Φ, 𝑑) 
and Ψ𝑓 = 𝑓. This means that, 𝑓 corresponds to the equation (13) for each 𝑡 ∈ [0, 𝑏]. 

Now we validate that {𝑦 ∈ Φ/𝑑(𝑦, 𝑦) < ∞} = Φ. 
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For any value ℎ ∈ Φ, since ℎ and ℎ are bounded on the interval [0, 𝑏] and minఛ∈[,]  𝛽(𝜏) > 0, there 

is a constant 0 < 𝐶 < ∞ such that |ℎ(𝜏) − ℎ(𝜏)| ≤ 𝐶𝜗(𝜏). 

Hence, we must have 𝑑(ℎ, ℎ) < ∞, ∀ℎ ∈ Φ. (i.e) {ℎ ∈ Φ/𝑑(ℎ, ℎ) < ∞} = Φ. 

Hence in sight of theorem (2.1), we can conclude that 𝑓 is the unique continuous function with the 
property (13). 

Also, it follows from (10) 

−𝜗(𝜏) ≤ 𝑦ᇱᇱ − 𝐴𝑦(𝜏) − 𝐹൫𝜏, 𝑦ఙ(ఛ,௬ഓ)൯ ≤ 𝜗(𝜏) 

∀𝜏 ∈ [0, 𝑏]. 

If we integrate every terms of previous inequality from 0 to, we get 

− න  
ఛ



 𝜗(𝜏)𝑑𝜏 ≤ න  
ఛ



  [𝑦ᇱᇱ(𝜏) − 𝐴𝑦(𝜏) − 𝑔(𝜏, 𝑦ఙ)]𝑑𝜏 ≤ න  
ఛ



 𝜗(𝜏)𝑑𝜏

− න  
ఛ



 𝜗(𝜏)𝑑𝜏 ≤ 𝑦ᇱ(𝜏) − 𝑥(𝜏) − න  
ఛ



 𝐴𝑦(𝜏)𝑑𝜏 − න  
ఛ



 𝑔(𝜏, 𝑦ఙ)𝑑𝜏 ≤ න  
ఛ



 𝜗(𝜏)𝑑𝜏

 

Again integrating from o to 𝑠 we get, 

− න  
௦



න  
ఛ



𝜗(𝜏)𝑑𝜏𝑑𝑠 ≤ 𝑦(𝜏) − 𝛽(0)𝑐(𝜏) − 𝑠(𝜏)𝑥 − න  
ఛ



𝑆(𝜏 − 𝑠)𝑔(𝑠, 𝑦௦)𝑑𝑠 ≤ න  
௦



න  
ఛ



𝜗(𝜏)𝑑𝜏𝑑𝑠 

Now applying the replacement lemma, we obtain 

− න  
ఛ



  (𝜏 − 𝑠)𝜗(𝜏)𝑑𝜏 ≤ 𝑦(𝜏) − 𝛽(0)𝑐(𝜏) − 𝑠(𝜏)𝑥 − න  
ఛ



 𝑆(𝜏 − 𝑠)𝑔(𝑠, 𝑦௦)𝑑𝑠 ≤ න  
ఛ



  (𝜏 − 𝑠)𝜗(𝜏)𝑑𝜏

ቤ𝑦(𝜏) − 𝛽(0)𝑐(𝜏) − 𝑠(𝜏)𝑥 − න  
ఛ



 𝑆(𝜏 − 𝑠)𝑔(𝑠, 𝑦௦)𝑑𝑠ቤ ≤ ቤන  
ఛ



  (𝜏 − 𝑠)𝜗(𝜏)𝑑𝜏ቤ

ቤ𝑦(𝜏) − 𝛽(0)𝑐(𝜏) − 𝑠(𝜏)𝑥 − න  
ఛ



 𝑆(𝜏 − 𝑠)𝑔൫𝑠, 𝑦
௦
൯𝑑𝑠ቤ ≤ 𝜅ଵ𝜗(𝜏)

 

∀𝜏 ∈ [0, 𝑏]. 

Hence by conditions (12) and (17) we get 

|𝑦(𝜏) − (Ψ𝑦)(𝜏)| ≤ 𝜅ଵ𝜗(𝜏) 

∀𝜏 ∈ [0, 𝑏], which gives 
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𝑑(𝑦, Ψ𝑦) ≤ 𝜅ଵ𝜗(𝜏) (18) 

Finally the theorem (2.1) with (18) means that 

𝑑(𝑦, 𝑦) ≤
1

1 − 𝜅ଵ𝐶𝑎ଶ𝐿൫1 + ℜ[𝜎]୧୮ ([,]×;ோశ)൯
𝑑(𝑦, Ψ𝑦)

𝑑(𝑦, 𝑦) ≤
𝜅ଵ

1 − 𝜅ଵ𝐶𝑎ଶ𝐿൫1 + ℜ[𝜎]([,]×;ோశ)൯
𝜗(𝜏)

 

which completes the proof. 

Theorem 3.3 (Hyers-Ulam Stability(H-U-S)).  

Consider the closed interval 𝐼ோ = [0, 𝑏]. Let 𝜅ଵ, 𝐶, and 𝐿 be non-negative constants with the condition 

0 < 𝜅ଵ𝐶𝑎ଶ𝐿 ቀ1 + ℜ[𝜎]Lip ൫[,]×;ோశ൯ቁ < 1. Assume that the function 𝐹: [0, 𝑏] × ℜ → ℜ is 

continuous and satisfying the Lipschitz condition 

|𝐹(𝜏, 𝑦ఙ) − 𝐹(𝜏, 𝑧ఙ)| ≤ 𝐿൫1 + [𝑧]୧୮ ([ିఈ,];)[𝜎]୧୮ ([,]×;ோ)൯|𝑦 − 𝑧|ீ([ିఈ;],) (19) 

for each 𝜏 ∈ 𝐼ோ and 𝑢, 𝑣 ∈ ℜ. If 𝐹: [0, 𝑏] → ℜ is a continuously differentiable function satisfies 

∣ 𝑦ᇱᇱ − 𝐴𝑦(𝜏) − 𝐹൫𝜏, 𝑦ఙ(ఛ,௬ഓ) ∣≤ 𝜀 (20) 

∀𝜏 ∈ [0, 𝑏], then there is a unique continuous function 𝑓: [0, 𝑏] → ℜ such that 

𝑦(𝜏) = 𝐶(𝜏)𝛽(0) + 𝛿(𝜏) + න  
ఛ



 𝛿(𝜏 − 𝑠)𝐹൫𝑠, 𝑦ఙ(௦,௬ೞ)൯𝑑𝑠 (21) 

and 

|𝑦(𝜏) − 𝑦(𝜏)| ≤
𝑡𝑠

1 − 𝜅ଵ𝐶𝑎ଶ𝐿൫1 + ℜ[𝜎]([,]×;ோశ)൯
𝜀 (22) 

Proof:  

Define a set 

Φ = {𝑦: [0, 𝑏] → [−𝛼, 𝑏] ∣ 𝑦 is continuous } (23) 

equipped with generalized complete metric 

𝑑(𝑦, 𝑧) = inf{𝐶 ∈ [0, ∞]| |𝑦(𝜏) − 𝑧(𝜏) ∣≤ 𝐶,  ∀𝜏 ∈ [0, 𝑏]} (24) 
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Define an operator Ψ: Φ → Φ by 

(Ψ𝑦)(𝜏) = 𝐶(𝜏)𝛽(0) + 𝛿(𝜏) + න  
ఛ



 𝛿(𝜏 − 𝑠)𝐹൫𝑠, 𝑦ఙ(௦,௬ೞ)൯𝑑𝑠 (25) 

for each 𝑦 ∈ Φ. 

To reach our goal, we must first prove that Ψ is strictly contractive operator on Φ. 

For any 𝑦, 𝑧 ∈ Φ, assume 𝐶௬௭ ∈ [0, ∞] is arbitrary constant such that 𝑑(𝑦, 𝑧) ≤ 𝐶௬௭. 

(i.e) from (15) we have 

|𝑦(𝜏) − 𝑧(𝜏)| ≤ 𝐶௬௭ (26) 

∀𝜏 ∈ [0, 𝑏]. 

From the conditions (19), (25) and (26) we have 

|(Ψ𝑦)𝜏 − (Ψ𝑧)𝜏| ≤ න  
ఛ



 𝐶𝑎𝐿ห𝑦ఙ(௦,௬ೞ) − 𝑧ఙ(௦,௭ೞ)ห𝑑𝑠

|(Ψ𝑦)𝜏 − (Ψ𝑧)𝜏| ≤ 𝜅ଵ𝐶𝑎ଶ𝐿 ቀ1 + ℜ[𝜎]൫[,]×;ோశ൯ቁ 𝐶௬௭

 

for all 𝜏 ∈ [0, 𝑏]. That is 

𝑑(Ψ𝑦, Ψ𝑧) ≤ 𝜅ଵ𝐶𝑎ଶ𝐿 ቀ1 + ℜ[𝜎]൫[,]×;ோశ൯ቁ 𝐶௬௭ 

Hence, we can conclude that 

𝑑(Ψ𝑦, Ψ𝑧) ≤ 𝜅ଵ𝐶𝑎ଶ𝐿 ቀ1 + ℜ[𝜎]൫[,]×;ோశ൯ቁ 𝑑(𝑦, 𝑧) 

for any 𝑦, 𝑧 ∈ Φ. 

Analogously to the proof of the above theorem, we can show that each 𝑦 ∈ Φ satisfies the property 
𝑑(Ψ𝑦, 𝑦) < ∞. 

Therefore, theorem 2.1 implies that there exists a continuous function 𝑦: [0, 𝑏] → ℜ such that Ψ𝑦 →

𝑦 in (Φ, 𝑑) as 𝑛 → ∞ and such that 𝑦 = Φ𝑦, that is, 𝑦 satisfies (12) for any 𝜏 ∈ 𝐼ோ. From (14) and 
(16), it follows that for any arbitrary 𝑔 ∈ Φ, there is a constant 𝐶 such that 0 < 𝐶 < ∞ with 

|(Ψ𝑦)(𝜏) − 𝑦(𝜏)| = ቤ𝐶(𝜏)𝛽(0) + 𝛿(𝜏) + න  
ఛ



 𝛿(𝜏 − 𝑠)𝐹൫𝑠, 𝑦ఙ(௦,௬ೞ)൯𝑑𝑠 − 𝑦(𝜏)ቤ

|(Ψ𝑦)(𝜏) − 𝑦(𝜏)| ≤ 𝐶
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∀𝜏 ∈ [0, 𝑏]. Thus (24) it means that 

𝑑(Ψ𝑦, 𝑦) < ∞ 

Now we validate that {𝑦 ∈ Φ/𝑑(𝑦, 𝑦) < ∞} = Φ. 

For any value ℎ ∈ Φ, since ℎ and ℎ are bounded on the interval [0, 𝑏] and minఛ∈[,]  𝛽(𝜏) > 0, there 

is a constant 0 < 𝐶భమ
< ∞ such that |ℎ(𝜏) − ℎ(𝜏)| ≤ 𝐶𝜀. 

Hence, we must have 𝑑(ℎ, ℎ) < ∞, ∀ℎ ∈ Φ. (i.e) {ℎ ∈ Φ/𝑑(ℎ, ℎ) < ∞} = Φ. 

Hence in sight of theorem (2.1), we can conclude that 𝑓 is the unique continuous function with the 
property (21). Also, it follows from (20) 

−𝜀 ≤ 𝑦ᇱᇱ − 𝐴𝑦(𝜏) − 𝐹൫𝜏, 𝑦ఙ(ఛ,௬ഓ) ≤ 𝜀 

∀𝜏 ∈ [0, 𝑏]. 

If we integrate every terms of previous inequality from 0 to , we get 

− න  
ఛ



 𝜀𝑑𝜏 ≤ න  
ఛ



  [𝑦ᇱᇱ(𝜏) − 𝐴𝑦(𝜏) − 𝑔(𝜏, 𝑦ఙ)]𝑑𝜏 ≤ න  
ఛ



 𝜀𝑑𝜏 (27)

− න  
ఛ



 𝜀𝑑𝜏 ≤ 𝑦ᇱ(𝜏) − 𝑥(𝜏) − න  
ఛ



 𝐴𝑦(𝜏)𝑑𝜏 − න  
ఛ



 𝑔(𝜏, 𝑦ఙ)𝑑𝜏 ≤ න  
ఛ



 𝜀𝑑𝜏 (28)

 

Again integrating from o to s we get, 

− න  
௦



 න  
ఛ



 𝜀𝑑𝜏𝑑𝑠 ≤ 𝑦(𝜏) − 𝛽(0)𝑐(𝜏) − 𝑠(𝜏)𝑥 − න  
ఛ



 𝑆(𝜏 − 𝑠)𝑔(𝑠, 𝑦௦)𝑑𝑠 ≤ න  
௦



 න  
ఛ



 𝜀𝑑𝜏𝑑𝑠 (29) 

Now applying the replacement lemma, we obtain 

−𝜀𝜏𝑠 ≤ 𝑦(𝜏) − 𝛽(0)𝑐(𝜏) − 𝑠(𝜏)𝑥 − න  
ఛ



 𝑆(𝜏 − 𝑠)𝑔(𝑠, 𝑦௦)𝑑𝑠 ≤ 𝜀𝜏𝑠 (30)

ቤ𝑦(𝜏) − 𝛽(0)𝑐(𝜏) − 𝑠(𝜏)𝑥 − න  
ఛ



 𝑆(𝜏 − 𝑠)𝑔(𝑠, 𝑦௦)𝑑𝑠ቤ ≤ |𝜀𝜏𝑠| (31)

ቤ𝑦(𝜏) − 𝛽(0)𝑐(𝜏) − 𝑠(𝜏)𝑥 − න  
ఛ



 𝑆(𝜏 − 𝑠)𝑔(𝑠, 𝑦௦)𝑑𝑠ቤ ≤ 𝜀𝜏𝑠 (32)

 

∀𝜏 ∈ [0, 𝑏]. 

Hence by conditions (12) and (17) we get 
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|𝑦(𝜏) − (Ψ𝑦)(𝜏)| ≤ 𝜀𝜏𝑠 

∀𝜏 ∈ [0, 𝑏], which gives 

𝑑(𝑦, Ψ𝑦) ≤ 𝜀𝜏𝑠 (33) 

Finally, the theorem (2.1) with (33) means that 

𝑑(𝑦, 𝑦) ≤
1

1 − 𝜅ଵ𝐶𝑎ଶ𝐿൫1 + ℜ[𝜎]୧୮ ([,]×;ோశ)൯
𝑑(𝑦, Ψ𝑦)

𝑑(𝑦, 𝑦) ≤
𝜏𝑠

1 − 𝜅ଵ𝐶𝑎ଶ𝐿൫1 + ℜ[𝜎]([,]×;ோశ)൯
𝜀

 

which completes the proof. 

4. Conclusion 
Hernendoz has proved uniqueness and existence of solutions in second order differential equations with 
state dependent equations with state dependent delay. For the current research, a fore stated problem is 
taken into consideration with the inclusion and implementation of HURS. Thus, with the application of 
HURS the research successfully satisfied the purpose and effectively proved. 
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