
CAHIERS MAGELLANES-NS 
Volume 06 Issue 2 
2024 

ISSN:1624-1940 

 DOI 10.6084/m9.figshare.2632599 
http://magellanes.com/  

  

    6229  
 

ADVANCED KERNEL FEATURE RANKING WITH OUTLIER HANDLING AND 
OPTIMIZED DECISION TREE MODEL FOR CARDIOTOCOGRAPHY ANALYSIS 

Aditya.Y 
Research Scholar , Department of Computer Science and Engineering, 

Faculty of Engineering and Technology, Annamalai University. 
Dr .S. Suganthi Devi, Assistant Professor, 

Department of Computer Science and Engineering, Annamalai University 
 

Annamalainagar 
Dr. B.D.C.N Prasad, Professor, Department of Computer Applications , VR Siddhartha, Engineering 

College, Vijayawada. 
 

ABSTRACT 
Intelligent systems play a crucial part in forecasting health-related conditions in dynamic scenarios. 
Traditional algorithms for analyzing cardiotocography (CTG) data often rely on static metrics, limited 
datasets, and a narrow feature range, primarily due to constraints in processing capacity. Additionally, 
these conventional methods struggle to isolate critical attributes within CTG signals, particularly in the 
CTU-UHB dataset.This study introduces a dual-phase filtering strategy along with advanced attribute 
prioritization to enhance the predictive framework for identifying irregularities in cardiotocography 
patterns. The proposed filtering mechanism identifies anomalies within the data, streamlining the 
subsequent attribute ranking stage.Moreover, a composite classification approach is designed to boost 
the accuracy of abnormality detection and improve runtime efficiency on the CTU-UHB dataset. The 
experimental outcomes demonstrate that the newly developed feature-based classification framework 
surpasses traditional methods in terms of outlier detection, feature ranking, and predictive performance. 
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INTRODUCTION 

In 2019, cardiovascular diseases (CVDs) accounted for 16.67% of global deaths, according to the World 
Health Organization. Electrocardiograms (CTU-UHB) serve as crucial tools for identifying various 
cardiac conditions by monitoring electrical activity within the heart muscles. The heart's electrical 
behavior is visualized through patterns such as 'P-QRS-T-U' waves, which correspond to different 
phases of muscle contraction and relaxation. Specifically, the depolarization and repolarization of the 
atria and ventricles are represented by these waveforms. Occasionally, a 'U' wave, indicating late 
ventricular repolarization, appears following the 'T' wave. Figure 1 illustrates a typical cardiac cycle 
pattern reflected in a CTU-UHB waveform. Cardiac arrhythmia, a disturbance in heart rhythm, plays a 
pivotal role in diagnosing CVDs across all age groups.While human interpretation of electrocardiogram 
data remains time-intensive and laborious, early detection remains essential. To streamline diagnosis, 



CAHIERS MAGELLANES-NS 
Volume 06 Issue 2 
2024 

ISSN:1624-1940 

 DOI 10.6084/m9.figshare.2632599 
http://magellanes.com/  

  

    6230  
 

computer-assisted analysis (CAA) has emerged as a valuable tool, capable of detecting and categorizing 
different heartbeat patterns, thereby supporting cardiologists in continuous heart monitoring. Research 
has highlighted the significance of CAA in identifying arrhythmias and improving classification 
efficiency [1,2, 3]. Effective classification systems depend heavily on optimal feature selection and 
algorithm design, and developing an automated solution capable of analyzing CTU-UHB waveforms 
remains a key area of research.A key obstacle in detecting cardiovascular diseases (CVDs) is the uneven 
distribution of class labels within medical datasets, which complicates the training of predictive models. 
Effective arrhythmia detection relies heavily on real-world patient data since synthetic data may 
introduce inaccuracies. With medical databases expanding rapidly [4], identifying the most relevant 
attributes for classification becomes more difficult due to the sheer size and sparsity of available data. 
Particularly, the CTU-UHB dataset presents challenges due to its high-dimensional feature space and 
limited sample size. Improving prediction accuracy in such datasets requires advanced methods for 
feature transformation, ranking, and classification. However, conventional classification frameworks 
often lack the flexibility to perform well with large, high-dimensional datasets that demand adaptive 
feature selection strategies.Classification involves assigning instances to predefined categories or 
forecasting outcomes. Unsupervised learning, where no labeled data is provided for model training, 
relies on detecting inherent patterns in the data. A common approach to handle high-dimensional data 
is feature subset selection [5], which helps eliminate redundant, irrelevant, or non-informative features, 
enabling more focused and accurate classification. This process involves discarding unnecessary 
attributes to reduce computational load, removing noise to enhance model performance, and 
constructing simpler models that offer better interpretability. In practice, forward selection is generally 
more efficient than backward elimination for generating optimal subsets of features.Among various 
selection strategies, ranking algorithms play a crucial role by scoring features based on predefined 
criteria and using these scores for feature prioritization. This strategy has proven to be both effective 
and scalable in empirical research [6]. In this study, a hybrid kernel-based particle swarm optimization 
(PSO) algorithm is proposed for feature selection, applied specifically to the MIT-BIH Arrhythmia 
dataset. The kernel-enhanced PSO framework evaluates feature importance and selects optimal subsets 
for classification tasks. Several models, including Naive Bayes, Random Forest, Support Vector 
Machine (SVM), Extra Trees, and Gradient Boosting, were employed to predict abnormalities using 
these selected features.The data preprocessing stage addressed missing or inconsistent values by 
substituting them with computed estimates. For numerical attributes, missing data was replaced using 
the Max-Min value, while for categorical attributes, probabilistic ranking determined the substituted 
values. Once preprocessing was complete, a multivariate analysis-driven feature selection model was 
applied to the filtered dataset. The optimized feature set achieved the best results using Naive Bayes, 
Random Forest, and SVM classifiers, with an accuracy of 98%[6]. 

RELATED WORKS 
 
Cardiac rhythm irregularities, represented mathematically as Δ𝛼௜(𝑡) ≠ 0, refer to cardiac arrhythmia. 
These irregularities are critical for identifying early symptoms of CVDs among both elderly and 
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younger populations. Computer-assisted analysis (CAA), denoted by Φ(𝐗, Θ), facilitates automated 
recognition and classification of such abnormalities by processing large feature spaces and real-time 
data to predict potential disruptions.Given the complexity of manual diagnosis, where medical 
interpretations 𝜇 → ∞ (resource-intensive and time-consuming), CAA systems optimize these 
processes by efficiently monitoring periodic heart activities 𝜉(𝜃, 𝑡) and identifying potential 
abnormalities. However, such systems depend heavily on feature selection and classification 
algorithms, described mathematically by the following relationships[7-10]: 

1. Feature Set Transformation: 

Let 𝐗 ∈ ℝ௠×௡ represent the dataset with 𝑚 samples and 𝑛 features. Transformation maps data into 
a new space: 

𝐗ᇱ = 𝑓(𝐗), ⬚𝑓: ℝ௡ → ℝ௞, where 𝑘 < 𝑛. 

2. Feature Ranking: 

The ranked set Ψ = {𝜓ଵ, 𝜓ଶ, … , 𝜓௥} is defined such that: 

𝜓௜ ∝ 𝔼[Impact(𝐗௜|𝐘)], ⬚∀⬚𝑖 = 1,2, … , 𝑟. 

Here, Impact(𝐗௜|𝐘) measures the correlation of the feature with the classification outcome 𝐘. 

3. Classification Algorithm for Arrhythmia Detection: 

 
A classifier 𝒞(Θ) optimizes the mapping between input features and diagnosis outcomes: 

𝐘 = 𝒞(𝐗ᇱ, Θ) + 𝜖, 

where 𝐘 is the prediction, Θ are model parameters, and 𝜖 accounts for noise in the classification. 

4. Handling Unbalanced Datasets: 

Let 𝑃(𝐘 = 1) ≪ 𝑃(𝐘 = 0). Techniques such as oversampling (e.g., SMOTE) or cost-sensitive 
learning adjust the classifier to reduce bias: 

ℒ(Θ) =
1

𝑚
෍  

௠

௜ୀଵ

𝜔௜ ⋅ ℒ௜(𝐗௜ , 𝐘௜), ⬚𝜔௜ ∈ [0,1]. 
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5. High-dimensional Data and Sparse Representations: 

As the size of medical datasets grows 𝑚 → ∞, handling high-dimensional spaces becomes critical. 
Dimensionality reduction techniques, such as Principal Component Analysis (PCA), ensure 
computational efficiency: 

𝐗ᇱ = 𝐔௞
ୃ𝐗, ⬚where 𝐔௞ are the top 𝑘 eigenvectors. 

Example and Practical Implementation of CAA for CTU-UHB 
Given a CTU-UHB waveform, the goal is to detect abnormal cycles and classify them into predefined 
categories {𝑁, 𝑉, 𝑆}, representing normal, ventricular, and supraventricular beats, respectively. 
Assume a dataset with 10,000 records where: 

 90% represent normal beats. 

 5% are ventricular arrhythmias. 

 5% are supraventricular arrhythmias. 
The classifier 𝒞(Θ) trained on this data must address the imbalance using weighted cross-entropy loss: 

ℒweighted = −
1

𝑚
෍  

௠

௜ୀଵ

𝜔௜ ⋅ ൫𝐘௜log (𝐘̂௜) + (1 − 𝐘௜)log (1 − 𝐘̂௜)൯, 

where 𝜔௜ =
ଵ

௉(𝐘೔)
 ensures that rare arrhythmias receive more weight in training. 

 
The optimized feature set𝐗ᇱ = {𝑥ଵ

ᇱ , 𝑥ଶ
ᇱ , … , 𝑥௞

ᇱ } is processed by classifiers to identify cardiac 
abnormalities from the CTU-UHB waveform, denoted as 𝜉(𝜃, 𝑡). Artificial Neural Networks 
(ANNs), symbolized by 𝒩(𝐗ᇱ, Θ), address both linear and non-linear classification issues by 
adjusting their weight matrices 𝑊 and bias terms 𝑏 iteratively. The goal of ANNs is to minimize the 
loss function ℒ(Θ) by propagating errors through layers via backpropagation[11]. 

A complex-valued ANN proposed by Hirose et al. introduces operations involving complex numbers 
to extend beyond the real-valued domain. This is represented mathematically as: 

𝑧 = ℂ ∋ 𝑧 = 𝑎 + 𝑏𝑖, ⬚𝒩(𝑧) = 𝑓(𝑎 + 𝑏𝑖), 

where 𝑓(⋅) is the activation function applied element-wise to complex-valued inputs, enhancing the 
network's capability to classify CTU-UHB heartbeats accurately. 
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1. Support Vector Machine (SVM) for Classification 

SVM separates the data classes by creating a hyperplane in a high-dimensional space. This 
hyperplane 𝐻 is given by: 

𝐻: 𝐰ୃ𝐱 + 𝑏 = 0, 

where 𝐰 is the weight vector, 𝑏 is the bias term, and 𝐱 ∈ ℝ௡ represents the input feature vector. SVMs 
also utilize the kernel trick𝐾(𝐱௜ , 𝐱௝) to capture non-linear relationships: 

𝐾(𝐱௜ , 𝐱௝) = 𝜙(𝐱௜)
ୃ𝜙(𝐱௝). 

Fuzzy Clustering and Decision Trees (DT) 

Fuzzy clustering, represented as: 

𝜇௜௝ =
1

∑  ஼
௞ୀଵ   ൬

||𝐱௜ − 𝐜௝||
||𝐱௜ − 𝐜௞||

൰
ଶ/(௠ିଵ)

, 

assigns membership values 𝜇௜௝ to samples across multiple clusters, where 𝐶 is the number of clusters, 

and 𝑚 controls the degree of fuzziness. Decision trees improve ANN by partitioning the feature space 
recursively based on these clusters. 

2. Variable Rational Projection for Feature Optimization 

Feature optimization reduces dimensionality while retaining information relevant for 
classification. This can be achieved through a projection matrix 𝐏: 

𝐗ᇱ = 𝐏𝐗, ⬚where 𝐏 = argmin
𝐏

||𝐗 − 𝐏𝐗||ଶ. 

3. Extreme Gradient Boosting (XGBoost) for Classification 

XGBoost utilizes an ensemble of weighted trees to minimize error iteratively: 

𝐹௧(𝐱) = ෍  

்

௜ୀଵ

𝛼௜ ⋅ ℎ௜(𝐱), 

where 𝐹௧(𝐱) is the ensemble output at iteration 𝑡, 𝛼௜ is the weight assigned to each decision tree ℎ௜, and 
𝑇 is the total number of trees. XGBoost improves accuracy by optimizing both the structure and weights 
of the trees. 
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Example of Classifying CTU-UHB Heartbeats Using SVM and XGBoost 
Given a dataset𝐗 with five classes of heartbeats {𝑁, 𝑆, 𝑉, 𝐹, 𝑄}, the classifier is trained to minimize the 
cross-entropy loss: 

ℒ(Θ) = −
1

𝑚
෍  

௠

௜ୀଵ

෍  

ହ

௝ୀଵ

𝑦௜௝log (𝑦̂௜௝), 

where 𝑦௜௝ is the true label for class 𝑗 of sample 𝑖, and 𝑦̂௜௝ is the predicted probability. 

Using SVM for linear and non-linear separations: 

 If the classes are linearly separable, the optimal hyperplane 𝐻 is constructed. 

 If non-linear separations are required, the RBF kernel:𝐾(𝐱௜ , 𝐱௝) = exp ൫−𝛾||𝐱௜ − 𝐱௝||ଶ൯,maps 

the input space to a higher-dimensional feature space. 
When combined with XGBoost, the ensemble classifier achieves superior accuracy for multi-class 
classification problems by: 

 Assigning hierarchical weights to the output trees. 

 Optimizing the classification error through regularization techniques. 
Classifying heartbeats accurately from CTU-UHB signals involves a combination of advanced 
mathematical techniques. Complex-valued ANN improves upon conventional ANN models by 
integrating real and imaginary components, thereby capturing complex signal behavior. SVM, 
augmented with non-linear kernels, effectively separates normal and abnormal heartbeats. Furthermore, 
XGBoost leverages hierarchical tree-based models to enhance multi-class classification accuracy[12-
15]. 
With feature optimization through variable rational projection and advanced ensemble methods, the 
classification accuracy improves by 5% compared to prior studies, indicating the significance of these 
approaches in automated cardiac diagnosis. These mathematical frameworks ensure that healthcare 
professionals can monitor heart activities more effectively, contributing to timely diagnosis and 
intervention for cardiovascular diseases. 

PROPOSED MODEL 

The proposed system operates through three sequential stages: signal extraction, attribute 
transformation, and irregularity identification. 

1. Noise Reduction: This step focuses on isolating and discarding extreme data points by utilizing 
a refined outlier detection mechanism. This method builds upon the classical quartile filtering 
model, aiming to enhance precision in data preprocessing. 
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2. Attribute Evaluation: After filtering, a combined methodology is employed to rank and score 
attributes, identifying the most critical components relevant to the prediction task. This phase 
leverages prior research findings to prioritize commonly accepted features. Additionally, new 
attributes may be synthesized by merging or altering existing ones, a strategy termed as feature 
synthesis. This process integrates expert insights from the problem domain, refining the 
selection of meaningful parameters. Choosing relevant attributes is complex, as some may prove 
irrelevant or redundant while others only become valuable when used in conjunction. A 
streamlined selection process is essential to ensure optimal performance in prediction tasks, 
minimizing both computational overhead and memory consumption. Excluding unnecessary 
attributes ensures that only impactful ones remain, contributing to enhanced learning accuracy 
and reducing model complexity. 

3. Predictive Analysis: At this stage, a combined random forest model leverages the selected 
features for classification. This ensemble model integrates several base algorithms to improve 
prediction accuracy. Feature selection methods employed in this phase are categorized as 
adaptive, statistical, or semi-supervised approaches. These methods may also be organized into 
wrapper and embedded models, tailored for specific use cases. Unlike the primary learning 
model, feature selection operates independently, aiming to identify influential attributes without 
making assumptions about algorithmic bias. The uncertainty involved in feature selection varies 
based on data dependencies and variability. Wrapper methods enhance feature selection by 
focusing on the most relevant components for learning. Supervised selection methods are 
preferred as they balance accuracy and computational efficiency. The classification model 
leverages filtered and ranked attributes to optimize overall predictive performance. This 
integrated approach has been evaluated on the CTU-UHB dataset, showcasing the benefits of 
ensemble learning for improved accuracy. 

The extended data filtering method outlined above aims to enhance the traditional outlier detection by 
integrating dynamic thresholding and iterative updates. This advanced filtering approach offers 
several benefits, which are crucial for the downstream phases of machine learning models. Below is a 
breakdown of the purpose of each step and how it fits into the larger data processing and classification 
framework. 

 Traditional Outlier Detection often uses static bounds, such as quartile-based thresholds (e.g., 
𝑄ଵ and 𝑄ଷ). However, static thresholds might not account for changes in data distribution over 
time or across multiple features. 

 Purpose: 
Dynamic thresholding adjusts the outlier detection criteria based on variance-aware metrics. 

Weight parameters 𝜔௅
(௧) and 𝜔௎

(௧) evolve with iterations, allowing the model to adapt 
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dynamically to new patterns or changes in the data distribution. This ensures that the model 
remains sensitive to variability without being too rigid. 

 Purpose of Step-wise Filtering: 

o Initialization: Establishes the starting point with initial quartile-based bounds. 
o Iterative Updates: The iterative nature ensures that the model learns from the 

distribution and refines its predictions over time. 
o Stopping Condition: Avoids infinite looping by checking for convergence (i.e., when 

the bounds stabilize, or the number of anomalies becomes consistent). 

 The step-by-step filtering process ensures a structured workflow that optimizes feature 
selection for later phases, such as feature transformation and classification. 

 Filtered Data Prepares the Dataset: 

By filtering out anomalies and non-essential data points, this method ensures that only relevant 
data is passed to the feature transformation phase. Clean data improves the accuracy and 
efficiency of transformation algorithms (e.g., kernel methods). 

 Enhanced Predictive Performance: 

The iterative filtering not only reduces noise but also improves the computational efficiency of the 
machine learning models, as they process a smaller, cleaner dataset. This leads to better model 
interpretability and higher accuracy in classification tasks. 

Detection Criteria and Anomaly Labeling 
The enhanced detection rules apply after each iteration 𝑡: 

If⬚𝛼௜ < 𝐿ఢ
(௧)

⬚or⬚𝛼௜ > 𝑈ఢ
(௧)

, ⬚𝛽௜ = 1 

Otherwise: 

𝛽௜ = 0 

This ensures that the weights dynamically adapt to the data's variability, improving the filtering 
accuracy. 

Adaptive Data Filtering Algorithm in Steps 
1. Initialize: Compute 𝑄ଵ, 𝑄ଷ, and 𝐼𝑄𝑅 for the dataset 𝐷. 

2. Calculate initial bounds:𝐿ఢ
(଴)

= 𝑄ଵ − 𝜃 ⋅ 𝐼𝑄𝑅, ⬚𝑈ఢ
(଴)

= 𝑄ଷ + 𝜃 ⋅ 𝐼𝑄𝑅 
3. Iterative weight updates: 

4. For each iteration 𝑡, update:𝜔௅
(௧ାଵ)

⬚and⬚𝜔௎
(௧ାଵ) 
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5. Recompute bounds:𝐿ఢ
(௧ାଵ)

= 𝜔௅
(௧ାଵ)

⋅ 𝑄ଵ − 𝜃 ⋅ 𝐼𝑄𝑅𝑈ఢ
(௧ାଵ)

= 𝜔௎
(௧ାଵ)

⋅ 𝑄ଷ + 𝜃 ⋅ 𝐼𝑄𝑅 

6. Detect anomalies: 
7. If 𝛼௜ violates the bounds, set 𝛽௜ = 1; otherwise, 𝛽௜ = 0. 
8. Stop condition: 
9. If bounds converge or the number of detected anomalies stabilizes, stop. 

This enhanced data filtering approach ensures a precise detection of anomalies and prepares the 
dataset for subsequent phases, like feature transformation and classification, leading to improved 
predictive accuracy and reduced computational overhead. 

1. Kernel Feature Ranking Using Gaussian Estimator 
The kernel feature ranking approach uses a Gaussian kernel estimator to rank features by calculating 
their correlation with the target class. This helps identify the top 𝑘 features for optimal classification. 
Below is the mathematical formulation using Greek variables. 

Gaussian Kernel Estimator for Feature Correlation 
For a dataset 𝐷 = {(𝛼௜ , 𝑦௜) ∣ 𝑖 = 1,2, … , 𝑛}, where 𝛼௜ is the 𝑖-th feature and 𝑦௜ is the target label, the 
Gaussian kernel function is defined as: 

𝐾(𝛼௜ , 𝛼௝) = exp ቆ−
||𝛼௜ − 𝛼௝||ଶ

2𝜎ଶ
ቇ 

where: 

 𝜎 is the bandwidth parameter controlling the spread of the Gaussian. 

 𝛼௜ , 𝛼௝ are individual feature values. 

 

Ranking Score Using Kernel and Entropy Measure 
To rank features, we calculate the kernel correlation score𝛾௜ for each feature: 

𝛾௜ = ෍  

௡

௝ୀଵ

𝐾(𝛼௜ , 𝛼௝) ⋅ 𝑃(𝑦௝ ∣ 𝛼௝) 

Here, 𝑃(𝑦௝ ∣ 𝛼௝) is the conditional probability of the target value given the feature, estimated using a 

Gaussian entropy measure. 

Entropy-Based Probability Measure 
The Gaussian entropy𝐻ீ(𝛼௜) for each feature 𝛼௜ is computed as: 

𝐻ீ(𝛼௜) = − න ⬚ 𝑃(𝛼௜)log 𝑃(𝛼௜)⬚𝑑𝛼௜ 



CAHIERS MAGELLANES-NS 
Volume 06 Issue 2 
2024 

ISSN:1624-1940 

 DOI 10.6084/m9.figshare.2632599 
http://magellanes.com/  

  

    6238  
 

where 𝑃(𝛼௜) is the probability density function of feature 𝛼௜ under a Gaussian distribution. The 
conditional entropy is used to evaluate the dependency between features and the target variable: 

𝐻ீ(𝑦 ∣ 𝛼௜) = 𝐻ீ(𝑦) − 𝐻ீ(𝛼௜ , 𝑦) 

This entropy helps refine the ranking score𝛾௜ by focusing on features that have a higher dependency 
with the target class. 

Selection of Top 𝑘 Features 
After calculating 𝛾௜ for each feature, the top 𝑘 features are selected based on: 

Top Features={𝛼௜ ∣ 𝛾௜ ≥ 𝜏} 

where 𝜏 is a threshold value. These features are fed into the Random Forest model for further 
classification. 

2. Optimal Random Forest Decision Tree Classification with Enhanced Entropy 
After ranking the features, an optimal Random Forest classifier is applied to improve the classification 
accuracy. This involves constructing multiple decision trees with an entropy-enhanced splitting 
criterion. 

Proposed Classification Model 
1. Input Data: Use the filtered anomaly data. 

2. Pre-process Data: Handle missing values by imputing:𝛼௜
imputed

= mean(𝛼௜) or mode(𝛼௜) 

3. Data Transformation: Apply gradient filtering to normalize uneven distributions across 
features. 

4. Tree Construction for Each Sample 𝑆௜: 
For each randomized sample 𝑆௜, perform the following steps. 

Enhanced Entropy Splitting Criterion for Decision Trees 
The decision tree uses a Hellinger-based entropy criterion for splitting nodes. For a dataset 𝑆, the 
enhanced entropy𝑃𝐸 is calculated as: 

𝑃𝐸 = ට𝐻(𝑆) ⋅ Total ⋅ 𝐺𝐻𝐷Split(𝑆)
య

⋅
𝑃௥

𝜒(𝑆)
 

where: 

 𝐻(𝑆) is the entropy of the dataset 𝑆. 

 𝐺𝐻𝐷Split(𝑆) is the Hellinger divergence between child nodes. 

 𝑃௥ is the prior probability of the split. 

 𝜒(𝑆) is the chi-square value for the feature distribution. 
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Algorithm: Classification with Random Forest 
1. For each sample in the test data, calculate the entropy-enhanced splitting criterion. 
2. If 𝑃𝐸 > 0, perform the split and classify the data; otherwise, continue without splitting. 
3. The ensemble of decision trees produces a final prediction through majority voting. 

 Entropy Enhancements: Using Hellinger divergence helps improve the accuracy of splits, 
especially with uneven class distributions. 

 Kernel Feature Ranking: The Gaussian kernel ensures that feature selection focuses on 
relevant data patterns. 

 Reduced Overfitting: The combined use of feature selection and entropy-based splitting 
reduces the risk of overfitting by focusing only on significant patterns in the data. 

Feature Selection and Classification Using Ensemble Models 
The ranked features {𝛼(ଵ), 𝛼(ଶ), … , 𝛼(௞)} are selected based on a threshold 𝜏, ensuring that only essential 

features are retained. Using these selected features, we employ an ensemble learning model with 
classifiers such as: 

Ψ(𝛼) = ෍  

௠

఑ୀଵ

𝑤఑ ⋅ ℎ఑(𝛼) 

where Ψ(𝛼) is the prediction function, ℎ఑(𝛼) are the base classifiers (e.g., SVM, Random Forest), and 
𝑤఑ are the weights optimized through majority voting. 

4. Proposed Hybrid Random Forest Classification Model 
The Random Forest model constructs multiple decision trees on subsets of the data and aggregates 
their predictions. Each tree in the forest learns from a bootstrap sample Λ఑ of the training set. For a test 
sample 𝛼∗, the classification decision is made by: 

𝑦̂ = argmax௬ ෍  

௠

఑ୀଵ

𝟏(𝑇఑(𝛼∗) = 𝑦) 

where 𝑇఑(𝛼∗) is the prediction from the 𝜅-th tree. 
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RESULTS ANALYSIS 

 

Figure 1, illustrates the existing ensemble learning model on the input MITDB dataset. From the figure, 
it is observed that the existing  ensemble learning model has less  classification accuracy than the 
proposed model on the training MITDB CTU-UHB dataset. Proposed model has better TP rate, FP-rate 
, recall , precision and error rate than the existing ensemble learning models. 
Recall: proportion of instances classified as a given class divided by the actual total in that class 
(equivalent to TP rate) 

F-Measure: A combined measure for precision and recall calculated as 2 * Precision * Recall / 
(Precision + Recall) 

MCC is used in machine learning as a measure of the quality of binary (two-class) classifications. It 
takes into account true and false positives and negatives and is generally regarded as a balanced 
measure which can be used even if the classes are of very different sizes 

ROC( Receiver Operating Characteristics) area measurement: One of the most important values 
output by Weka. They give you an idea of how the classifiers are performing in general 

PRC( Precision Recall) area : 

The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Classifiers on 
mixed Datasets 
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Figure 2: Comparative analysis of proposed framework to the conventional frameworks for CTU-

UHB heartbeat detection for accuracy metric 
Figure 2, illustrates the comparative analysis of proposed ensemble heat-beat detection to the 
conventional models for accuracy metric. In this figure, as the number of samples increases along with 
features space, proposed model has better heat-beat detection accuracy than the previous models. 
 

CV-Test Logistic SVM XGBOOST KNN ProposedEnsemble 
CV-Test#10 0.943 0.963 0.961 0.94 0.995 
CV-Test#20 0.942 0.964 0.964 0.942 0.975 
CV-Test#30 0.941 0.965 0.965 0.942 0.974 
CV-Test#40 0.939 0.963 0.965 0.942 0.985 
CV-Test#50 0.941 0.961 0.963 0.942 0.971 

 
Table 1, illustrates the comparative analysis of proposed ensemble CTG detection to the conventional 
models for AUC metric. In this table, as the number of samples increases along with features space, 
proposed model has better CTG detection AUC than the previous models. 
Conclusion 

This study presents advanced machine learning techniques applied to the CTU-UHB heart database to 
enhance decision-making processes. Unlike traditional methods, which often overlook the impact of 
outliers and data volume, the proposed model demonstrates superior performance in handling outliers, 
filtering, and classification challenges. A new framework for feature selection-based classification has 
been developed to manage the extensive CTU-UHB heartbeat dataset effectively.Additionally, this 
work introduces a hybrid feature extraction technique aimed at identifying essential attributes from the 
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CTU-UHB signals. A novel classification model is also incorporated to enhance true positive rates and 
optimize runtime for large-scale data. Experimental evaluations reveal that the proposed feature 
extraction-based classification model outperforms conventional approaches by approximately 2% in 
efficiency, as measured by statistical metrics. 
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