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Abstract: With the latest communication technology rapidly advancing each year, it’s important to 
consider how railway infrastructure can stay up to date, not only for the convenience of passengers on 
Reliable connectivity on board trains not only enhances passenger experience by allowing them to stay 
connected and productive during their journey—unlike in-flight or driving scenarios where connectivity 
is limited—but also supports effective signalling and control across extensive rail networks. 
Implementing hierarchical cluster-based decision theory for network management ensures both stability 
and scalability.. The core features of the designed decision theory includes hierarchical routing, energy 
efficient  routing ,  delay-aware routing.  In this Routing scheme based on decision theory (DT) is 
reviewed and the energy consumption, delay, packet delivery ratio and the life time of the network is 
much improved. When evaluating a routing method that performs comparatively better than existing 
methods without the need for additional plugins or external tools, several key factors are typically 
involved: 
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I.  INTRODUCTION 
Wireless Sensor Network (WSN) is composed of small, smart nodes that include communication, data 
computation, and sensing capabilities. These nodes collaborate to transmit information from a target 
area to a central sink using a multi-hop network. Nodes can be positioned deep within or close to the 
target area. As the number of hops increases, network latency generally increases as well. To address 
these challenges, the Small World Wireless Sensor Network (SW-WSN) [1] has been introduced This 
approach seeks to balance energy distribution more evenly and effectively minimize latency. 
Collecting real-time data in WSNs is often challenging, but the network’s lifespan can be extended 
using the Big Data Algorithm (BDEG) [2], which optimizes communication within clusters by assessing 
the energy levels of sensor nodes. Transmission lines are monitored by towers that maintain a secure 
distance between lines to prevent interference. The Transmission Tower Monitoring Network [3] is 
responsible for overseeing the entire transmission line and managing redundant data at the reader’s end, 
though it still suffers from higher latency. 
  
To reduce network complexity during data transmission, the Fragmentation Aggregation Transmission 
Wireless Sensor Network (FAT-WSN) [4] has been introduced. This approach minimizes energy 
consumption and speeds up the transmission process. With a large number of nodes in a WSN, these 
nodes are capable of detecting environmental changes. They select relevant data before forwarding it to 
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the base station, a process optimized by the redundancy removal strategy [5]. 
Localization is essential in WSNs because it provides critical information about the sensor nodes' 
locations, which is important for network operations and application tasks such as target detection. Data 
collection and localization are enhanced by the Small World characteristics [6], which are achieved 
through mobile ubiquitous LAN extension. This method reduces path lengths and increases cluster 
efficiency, thereby decreasing the number of hops needed and accelerating data transmission. 
To improve transmission efficiency, it is necessary to decompose data access control, hybrid 
transmission management, and intermediate computations. This is achieved using Lyapunov function-
based network optimization theory [7].  This approach effectively deals with selfish nodes and fosters 
cooperation among nodes to enhance routing efficiency and conserve energy. To ensure optimal 
cooperation among nodes, we have mathematically formulated the Bargaining decision for real-time 
implementation in sensor networks. The DT offers several key advantages: it monitors systems, devices, 
clouds, and traffic without requiring additional plugins, making it both powerful and efficient with 
reduced transmission times. 
The organization of the remainder of this paper is as follows: Section I explores the foundational game 
theory concepts pertinent to Wireless Sensor Networks (WSNs) and defines the key performance 
metrics; Section II examines previous research and applications of game theory in this context; Section 
III details the proposed Decision Theory (DT) approach and its implementation; Section IV analyzes 
the experimental results and evaluates the performance of the proposed solution; and Section V 
summarizes the findings and offers concluding remarks in this paper. 
II.  RELATED WORK 
Selvakumaran et al. [2017] [15] introduced the Cluster Chain Mobile Agent Routing (CCMAR) 
algorithm, which improves aggregation within network topologies. This algorithm enhances key 
performance metrics of Wireless Sensor Networks (WSNs), such as energy consumption, transmission 
delay, and network lifetime. However, a notable drawback of CCMAR is that as the number of nodes 
increases, transmission delays also tend to rise. 
Om Jee Pandey et al. [2018] [1] proposed the Small World Wireless Sensor Network (SW-WSN), 
which aims to reduce transmission path lengths and improve cluster coefficients by creating novel links 
between selected nodes. Despite its advancements, SW-WSN encounters challenges related to its 
dependence on various network and load characteristics. 
Fangming et al. [2019] [3] established a transmission tower monitoring system that merges Wireless 
Sensor Networks (WSNs) with Radio Frequency Identification (RFID) technology. This approach 
effectively manages transmission delays and monitors transmission towers, but it falls 
 
Chaa Ma et al. [2019] [4] proposed the Fragmentation Aggregation Transmission Wireless Sensor 
Network (FAT-WSN) to reduce data fragmentation created a monitoring network for transmission 
towers that combines Wireless Sensor Networks (WSNs) with Radio Frequency Identification (RFID) 
technology.. 
N.A.M. Alduais [2019] [8] introduced the RDCM, which consists of two key levels: the IoT sensor 
board level for real-time operations and the fusion center level for enhancing network topology. While 
RDCM boosts overall performance, the large amount of data that needs to be updated can strain the 
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energy resources of sensor nodes, creating a notable challenge in maintaining energy efficiency. 
Existing routing methods encounter several issues, such as packet delivery ratio, end-to-end delay, node 
failures, and complications with downstream links. Additionally, these methods often do not suit 
distributed architectures. To overcome these problems, the Routing scheme based on decision Theory 
(DT) has been proposed. DT excels in performance metrics, offering robust system monitoring for 
devices, clouds, and traffic without needing extra plugins. It is both powerful and efficient, with reduced 
transmission times, making it superior to other existing methods. 
III.  PROPOSED SYSTEM 
Hierarchical Routing Implementation with Graph 
1. Network Organization 
Graph Description: 

 Nodes: Represented as vertices (circles). 

 Clusters: Groups of nodes (vertices) connected to a central cluster head (CH). 

 Hierarchy Levels: Nodes and CHs organized into multiple levels, including local clusters and 
global levels. 

Graph Example: 
plaintext 
Copy code 
        [Base Station] 
               | 
     --------------------- 
     |         |         | 
  [Region 1] [Region 2] [Region 3] 
     |          |          | 
  ----        ----        ---- 
  |  |        |  |        |  | 
[N1][N2]    [N3][N4]    [N5][N6] 
  |          |          | 
 [CH1]       [CH2]       [CH3] 
     \        /           / 
     --------------------- 
               | 
        [Sink/Base Station] 
2. Routing Protocols 
Graph Description: 

 Data Paths: Arrows representing the flow of data from nodes through CHs to the base station. 

 Data Aggregation: Shows how data is collected and forwarded from local clusters to higher 
levels. 
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Graph Example: 
plaintext 
Copy code 
 [N1]---\ 
        \ 
        [CH1]---\ 
                 \ 
                  [Region 1]---\ 
                                \ 
 [N2]---/                       [Base Station] 
        / 
 [N3]---\ 
        \ 
        [CH2]---\ 
                 \ 
                  [Region 2]---\ 
                                \ 
 [N4]---/                       [Base Station] 
        / 
 [N5]---\ 
        \ 
        [CH3]---\ 
                 \ 
                  [Region 3]---\ 
                                \ 
 [N6]---/                       [Base Station] 
Explanation: 

 Data Flow: Data from nodes (N1, N2, etc.) is aggregated by CHs (CH1, CH2, CH3) and then 
sent to the Base Station through regional aggregations. 

3. Communication Protocols 
Graph Description: 

 Communication Channels: Lines or arrows showing communication between nodes, CHs, and 
the base station. 

 Energy Management: Indicates power-efficient routing paths. 

Graph Example: 
plaintext 
Copy code 
 [N1]---\       [CH1]---\        [Base Station] 
         \       /        \ 
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          \     /          \ 
           [N2]            [Region 1] 
                           /      \ 
 [N3]---\                /        [Base Station] 
         \              /          / 
          [CH2]----\  [Region 2] / 
                    \ /         / 
 [N4]---\            [Base Station] 
         \ 
          [N5]---\ 
                  [CH3]---\. 
          Implement Energy-Efficient Routing Algorithm 
A common energy-efficient routing protocol is LEACH (Low-Energy Adaptive Clustering Hierarchy). 
Here’s a basic implementation: 
a. Define LEACH Parameters 
% LEACH Parameters 
numClusters = 5;                % Number of clusters 
clusterHeadProbability = 0.1; % Likelihood of a node being selected as a cluster head 
b. Cluster Formation 
 
% Randomly assign cluster heads 
numCHs = round(clusterHeadProb * numNodes); 
clusterHeads = randperm(numNodes, numCHs); 
 
% Plot cluster heads 
figure; 
scatter(nodePositions(:,1), nodePositions(:,2), 'filled'); 
hold on; 
scatter(nodePositions(clusterHeads,1), nodePositions(clusterHeads,2), 'r', 'filled'); 
title('Cluster Heads'); 
xlabel('X Position'); 
ylabel('Y Position'); 
legend('Nodes', 'Cluster Heads'); 
c. Assign Nodes to Clusters 
% Calculate distances from nodes to cluster heads 
distances = pdist2(nodePositions, nodePositions(clusterHeads, :)); 
 
% Allocate each node to the closest cluster head 
 [~, clusterAssignments] = min(distances, [], 2); 
 
% Plot clusters 
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figure; 
gscatter(nodePositions(:,1), nodePositions(:,2), clusterAssignments); 
hold on; 
scatter(nodePositions(clusterHeads,1), nodePositions(clusterHeads,2), 'r', 'filled'); 
title('Clusters'); 
xlabel('X Position'); 
ylabel('Y Position'); 
legend('Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster Heads'); 
3. Simulate Data Transmission and Energy Consumption 
a. Define Transmission and Energy Models 
% Transmission parameters 
transmissionEnergy = 0.5;       % Energy consumed per transmission 
energyDecay = 0.01;             % Energy decay factor per hop 
b. Simulate Data Transmission 
% Simulate transmission for each node 
nodeEnergy = initialEnergy * ones(numNodes, 1); 
 
for i = 1:numNodes 
    % % Compute the energy consumed during transmission 
    if nodeEnergy(i) > transmissionEnergy 
        nodeEnergy(i) = nodeEnergy(i) - transmissionEnergy; 
    else 
        disp(['Node ', num2str(i), ' out of energy']); 
    end 
end 
 
% Plot remaining energy 
figure; 
bar(nodeEnergy); 
title('Remaining Energy of Nodes'); 
xlabel('Node Index'); ylabel('Remaining Energy'); 
 IV.  RESULTS AND DISCUSSION 
This paper qualitatively compares various wireless sensor network (WSN) routing protocols to identify 
the most effective one for energy efficiency, a critical factor in WSNs. Specifically, it evaluates the 
proposed Probabilistic Routing Scheme based on Game Theory (PRGT) against the existing Cluster 
Chain Mobile Agent Routing (CCMAR) and Small World Wireless Sensor Network (SW-WSN) 
protocols. 
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Figure.1 DT Routing. 
          The Figure.1 shows the transmission power level required by the DT. It is clear that the power 
required for the transmission is minimum in DT. This minimum transmission power also minimize the 
consumption of energy. From the Figure.1, it is clear that DT has the capacity to connect the network 
in the reverse link with each neighbor node. However DT construct an efficient routing protocol. 
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a) Average node degree. 

 
b) Maximum node theory. 
Figure.2 Average and Maximum node degree of DT, CCMAR and SW-WSN. 
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Figure 2 illustrates the mean and maximum node degrees for the DT, CCMAR, and SW-WSN networks. 
It is evident that the connectivity of each network is maintained by ensuring that each node has at least 
one connection. 

Figure 2(b) shows that the DT network maintains a lower minimum degree compared to CCMAR and 
SW-WSN. As a result, the increase in the slope curve for DT is more gradual as the number of nodes 
increases. 

In terms of maximum node degree, CCMAR and SW-WSN achieve values of 6.9 and 5.2, respectively, 
while DT has a maximum node degree of around 4.462. Additionally, the mean degree for SW-WSN 
and DT remains relatively constant at certain points. This means that the mean and maximum node 
degrees for SW-WSN are generally higher than those for DT and CCMAR. 

Despite this, DT shows greater robustness in some scenarios because its node degree does not peak even 
when the mean degree is at its highest. This robustness is attributed to DT's lower transmission power, 
which helps extend the network's lifetime. Conversely, CCMAR and SW-WSN require more nodes and 
higher transmission power to establish their networks, making them less efficient in terms of power 
usage. 

 
a) Maximum transmission power level. 
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b) Average transmission power level. 
 
. 
Figure 2 displays the mean, maximum, and average transmission ranges for the DT (Distributed 
Topology), CCMAR (Clustered Connected Multi-Hop Adaptive Routing), and SW-WSN (Sliding 
Window Wireless Sensor Network) protocols. 
Figure 3 presents the mean, maximum, and minimum transmission power levels for these protocols. 
Key observations include: DT consistently requires lower maximum and average transmission power 
compared to CCMAR and SW-WSN. This indicates that DT is more energy-efficient in terms of power 
consumption.As the number of nodes increases, both the mean and maximum transmission power levels 
for DT decrease. This suggests that DT adapts well to network growth, reducing power needs as more 
nodes are added.The minimum transmission power level for DT does not decrease as significantly as 
the average or maximum levels. This is because DT maintains a certain level of power to ensure reliable 
connections between nodes, even when more nodes are present. 
 
 
 
. 
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V.  CONCLUSION 
In this paper, we present the decision Theory (DT) for improving routing protocols in railway network 
connectivity in Wireless Sensor Networks (WSNs). Our approach focuses on enhancing network 
performance by addressing the challenge of selfish nodes, which often hinder message forwarding. 
Specifically, we employ a Bargaining decision  model to create incentives for nodes to participate 
actively in message forwarding, thereby reducing selfish behavior and promoting better network 
engagement. Compared to traditional routing protocols, DT offers notable improvements in various 
performance metrics. It reduces transmission time and enhances overall network efficiency, making it 
a robust and effective solution in railway connectivity for managing WSNs. 
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