SAUDI POPULATION KNOWLEDGE AND AWARENESS LEVEL OF HEPATITIS (TYPES, SYMPTOMS, METHODS OF TRANSMISSION, COMPLICATION AND RISK FACTOR)

Faisal Holil AlAnazi¹, Tala Zamil², Jana Ghazi², Abdulelah Alsharif², Alanoud Alsubhi³, Faisal Alharbi⁴, Rayan Bahmdoon⁴, Nawaf Alghanmi⁴, Rahma Aljeri⁵, Mohammed Alharbi⁶, Khames T. Alzahrani^{*7}

¹ Department of Internal Medicine, College of Medicine, Majmaah University, Majmaah, Saudi Arabia.

²Medical student, Umm Al-Qura University, Mecca, Saudi Arabia.

³General physician, Alnawaria primary health care, King Abdulaziz hospital, Mecca, Saudi Arabia.

⁴Medical student, King Abdulaziz University, Jeddah, Saudi Arabia.

⁵Medical student, King Faisal University, Al-Ahsa, Saudi Arabia.

⁶College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia.

⁷ BDS, PGD Endo from Stanford University, Saudi Board of Endodontic SR, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.

*Corresponding author: Khames T. Alzahrani; Email: Dr.khames.Alzahrani@gmail.com

Abstract

Background: This article discusses level of knowledge and awareness of hepatitis. Due to the prevalence of viral hepatitis, particularly hepatitis B and C, is a significant global health concern. Studies have shown that knowledge and awareness about hepatitis among the general public and healthcare professionals in Saudi Arabia is inadequate. This highlights the need to develop targeted educational programs and preventive healthcare policies to address the knowledge gaps and reduce the burden of viral hepatitis in the country. This study was to determine the level of knowledge and awareness about hepatitis types, symptoms, transmission routes, complications, and risk factors among Saudi populations. Methods: A cross-sectional study in Saudi Arabia evaluated public awareness and knowledge about hepatitis types. Participants were recruited via social media. The inclusion criteria were Saudi residents, while the exclusion criteria were not specified. The sample size was calculated as 384 using the Raosoft calculator, with a 50% indicator percentage, 5% margin of error, and 95% confidence interval. Data was collected through a structured questionnaire and pilot-tested on 20 individuals. The final data was entered into Excel and analyzed using SPSS version 25. This study aims to provide insights into the Saudi population's understanding of hepatitis, which can guide public health interventions. Results: The study assessed the knowledge and awareness of hepatitis among a cohort of 591 participants in Saudi Arabia, revealing critical gaps and areas for improvement. Although a majority (63.3%) identified hepatitis A, B, C, D, and E as viral infections, a significant portion (31.5%) remained uncertain about this fact. While 59.2% recognized personal hygiene as a preventive measure for hepatitis B and C, 25.9% were unsure, indicating a need for better education. Awareness of vaccine availability was also lacking, particularly for hepatitis C, with 47.2% of respondents unaware of any vaccination. Attitudes towards individuals with hepatitis exhibited stigma, as 44% believed such individuals should be barred from certain occupations, while 39.6% expressed concerns about infection rates. Despite a majority (83.6%) acknowledging the importance of blood screening prior to donation, only 18.4% of participants demonstrated high overall knowledge of hepatitis. With 47.9% categorized as having low knowledge and 71.7% displaying only moderate awareness. **Conclusion:** The study revealed significant gaps in knowledge and awareness of hepatitis types, prevention, and treatment among the Saudi Arabian population. While a majority (63.3%) recognized various hepatitis viruses, a concerning 31.5% remained uncertain about their viral nature. Knowledge of personal hygiene as a preventive measure was noted in 59.2% of the participants. Attitudinal findings revealed a pervasive stigma, with 44% believing individuals with hepatitis should be excluded from certain jobs. Ultimately, only 18.4% displayed high overall knowledge of hepatitis, with 47.9% categorized as having low knowledge levels.

Keywords: Knowledge, Awareness, Hepatitis, Saudi Arabia

Introduction:

Hepatitis has historically been defined as a disease of the liver. Eleven viruses, nine of which are hepatotrophic and two of which are transitory in nature, are linked to hepatitis in humans. Globally, hepatitis virus infection is a serious public health concern, with reports of a higher prevalence in developing nations. The different hepatitis viruses, including Hepatitis A, B, C, D, and E, can cause acute or chronic liver disease, and pose significant health and economic burdens, particularly in resource-limited settings [1]. Comes in five separate types: A, B, C, D, and E. In addition, there are more types that are not classified or have a less clear association to the illness Hepatitis [2]. Over 71 million individuals worldwide suffer from chronic hepatitis C infection, whereas over 296 million people worldwide are chronically infected with the hepatitis B virus (HBV) [3,4].

A study have been published on the Knowledge, attitudes, and practices of the population regarding viral Hepatitis B and C worldwide. Valentin Călugăreanu. reported that the population's knowledge and awareness of viral hepatitis B and C Both the general public and medical professionals still don't know enough about viral hepatitis B and C infections. Education and knowledge of viral hepatitis B and C are becoming more and more important. Valentin Călugăreanu [5].

A cross-sectional study conducted among general public of Saudi Arabia on level of knowledge of and testing rate for Hepatitis C Infection, the study suggests that knowledge about HCV infection among the general public of Saudi Arabia is inadequate [6].

A study on the knowledge, attitude, and practice of Hepatitis B among Saudi Arabia's healthy population was carried out in 2017. The findings showed that while the majority of participants had low levels of practice, 56% of them had good knowledge of the disease and high ratings for both knowledge and attitude [7]. A cross-sectional study carried out among general population of Riyadh, KSA awareness of hepatitis C. The study reveals that participants had little knowledge about hepatitis C prevention and treatment [8]. 2019 marked the completion of study on people's understanding of the hepatitis E virus, and the findings indicated that a large number of individuals were ignorant of this information [9].

In 2021, research has been conducted on level of knowledge among Saudi residents and the result has shown that most participants did not hear about hepatitis viruses and showed low level of knowledge on viral hepatitis (42%) [10]. In regards to the small number of researches relevant to our topic, particularly in Saudi Arabia, to identify the knowledge gaps Saudi population have on hepatitis in order to develop preventive healthcare policies and tailored education to reduce the disease burden. This study was conducted to assess the knowledge and awareness level of hepatitis types, symptoms, methods of transmission, complications and risk factors among Saudi Arabian society.

Materials and Methods:

Study design:

A cross-sectional study conducted between July to November 2024, based on a structured questionnaire developed by the authors, evaluates Saudi Arabian awareness and knowledge about hepatitis types. To acquire individuals from around Saudi Arabia, a sample recruiting approach relied on social media platforms (such as Twitter, Snapchat, Instagram, WhatsApp, Facebook, etc.).

Inclusion and Exclusion Criteria:

To acquire individuals from around Saudi Arabia, a sample recruiting approach relied on social media platforms (such as Twitter, Snapchat, Instagram, WhatsApp, Facebook, etc.).

Sample size:

In order to determine the minimum number of responses required to provide a representative sample for the entire population, sample size calculations were made. The Raosoft sample size calculator was used to calculate the sample size. The sample size that was determined was 384 with an indicator percentage of 0.50, a margin of error of 5%, and a confidence interval (CI) of 95%.

Method for data collection and instrument (Data collection Technique and Tools):

Data were collected by using an electronic questionnaire, which included questions designed to fulfill the study objectives. Data were collected by distribution of the questionnaire, where a link to the study questionnaire was sent through social media to several groups in the Kingdom of Saudi Arabia (KSA). Data collectors sent the link with briefing on the study and kindly requested from the participants who reside in KSA to respond to the questionnaire.

The questionnaire was divided into 4 sections. Section 1 included questions covering sociodemographic characteristics of the study participants. Section 2 included questions to examine the knowledge of the study participants about hep- atitis viruses. Section 3 included questions to determine par-ticipants' attitude toward hepatitis viruses. Finally, section 4 included questions to determine the practice of participants toward protecting themselves from hepatitis viruses [10].

Scoring system:

In all, 40 statements served to assess the participants' attitudes and degree of knowledge. 5 statements for demographics, 14 for knowledge, 10 for awareness, and 11 for practice. The knowledge questions were scored as one point for any correct answer and a zero for incorrect answer or "I don't know" The original Bloom's cut-off points, 80.0%-100.0%, 60.0%-70%, and 59.0%.

Part I: Knowledge

knowledge score varied from 0 to 18 points and was classified into three levels as follows: those with a score of 9 or below (10) were classified as having a low level of knowledge, those with scores between 14and 16 as having a moderate level of knowledge, and those with scores 17 or above as a high level of knowledge.

Part II: Attitude

Attitude scores varied from 0 to 20 points and were classified into three levels as follows: those with a score of 9 or below (9) were classified as having a low level of attitude, those with scores between

Volume 06 Issue 2 2024

12and 14as having a moderate level of attitude, and those with scores 19 or above as having a high level of attitude.

Pilot test:

Twenty people were requested to complete the questionnaire once it had been sent to them. This was done in order to evaluate the study's feasibility and the questionnaire's simplicity for use. The final study data did not include the data from the pilot trial.

Analyzes and entry method:

The data were collected on Google Drive and were revised, coded, entered to Excel/SPSS sheets, analyzed, and tabulated. Statistical Package for Social Sciences (SPSS)[®]version 23.0 software (Armonk, NY: IBM Corporation) was used for data analysis.

The electronic data was saved as an excel file in Microsoft Excel (2016) for Windows. The data was then imported to SPSS for Microsoft Windows, version 25, for statistical analysis

Results:

Table (1) displays various demographic parameters of the participants with a total number of (591). The age distribution shows a predominant presence of younger individuals, with approximately 39.1% falling below 21 years, suggesting a youthful demographic likely comprising students or early entrants into the workforce. Gender representation is notably skewed towards females, comprising nearly 60% of the participants, while the national composition reflects a strong majority of Saudi nationals at 93.1%, indicative of a localized population. Educational attainment reveals that over three-quarters of the participants possess post-secondary qualifications (either pursuing or holding a university degree), highlighting a well-educated cohort. In terms of marital status, a significant majority are single (67.2%), which aligns with the higher age concentration in the younger brackets. The occupational status is primarily student-oriented, reflecting the demographic's educational focus, while income levels reveal considerable financial variance, with a substantial portion earning less than 1,000.

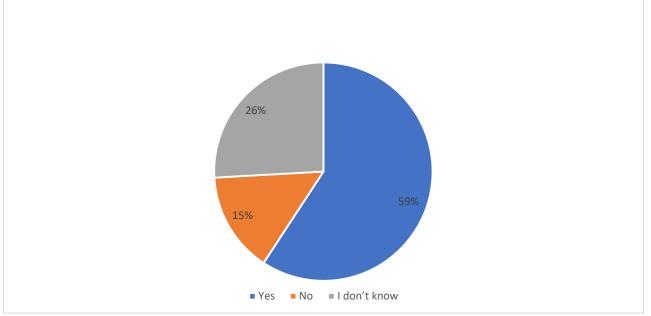

Parameter		<i>No</i> .	Percent (%)
Age	less than 20 years	107	18.1
	20 to 21	124	21.0
	22 to 23	82	13.9
	24 to 30	94	15.9
	31 to 45	110	18.6
	more than 45	74	12.5
Gender	Female	354	59.9
	Male	237	40.1
Nationality	Saudi	550	93.1
-	Non-Saudi	41	6.9
Educational level	Middle school	4	.7
	High school	84	14.2
	Diploma	31	5.2
	University student	226	38.2
	Bachelor's degree	222	37.6

Table (1): Sociodemographic characteristics of participants (n=591)

	Master's degree	20	3.4
	PHD	4	.7
Marital status	Single	397	67.2
	Married	174	29.4
	Divorced	9	1.5
	Widowed	11	1.9
Residential region	Northern region	9	1.5
_	Southern region	20	3.4
	Central region	36	6.1
	Eastern region	70	11.8
	Western region	456	77.2
Occupational status	Student	327	55.3
-	Employee	160	27.1
	Unemployed	77	13.0
	Retired	27	4.6
Monthly income	Less than 1000	252	42.6
2	1000 to 5000	145	24.5
	5001 to 10000	67	11.3
	10001 to 15000	48	8.1
	More than 15000	79	13.4

As shown in figure 1, Out of a total of 591 participants, 59.2% (350 respondents) believe that personal hygiene is effective in preventing Hepatitis B and C. On the other hand, 14.9% (88 respondents) think that personal hygiene is not effective for this purpose. Notably, 25.9% (153 respondents) are unsure, indicating a significant portion of the group lacks awareness or knowledge about the relationship between hygiene and hepatitis prevention.

Figure (1): Illustrates if personal hygiene prevents hepatitis infection among participants.

As illustrated in table (2), The data presented reflects critical insights into the knowledge of hepatitis among a diverse group of 591 participants. Notably, a significant majority of respondents, 63.3%, correctly identified that hepatitis A, B, C, D, and E are caused by viruses, although a concerning 31.5% remained uncertain. Personal hygiene was recognized as an effective prevention measure against hepatitis B and C by 59.2% of participants, indicating a need for continued education in this area, especially given that 25.9% were unsure. The perceived vaccine availability for hepatitis A and B was acknowledged by 42.1% and 52.8% of respondents, respectively, yet a substantial proportion remained uniformed, particularly about hepatitis C, where 47.2% indicated they did not know of a vaccine. Furthermore, a high level of awareness regarding the necessity of blood screening before donation was evidenced by 83.6%.

Table (2): Parameters related to knowledge of hepatitis among participants (n=591).

Parameter		No.	Percent (%)
Hepatitis A, B, C, D, and E are caused by viruses?	Yes	374	63.3
-	No	31	5.2
-	I don't know	186	31.5
Is personal hygiene effective to prevent Hepatitis B	Yes	350	59.2
and C?	No	88	14.9
	I don't know	153	25.9
Is personal hygiene effective to prevent Hepatitis A	Yes	347	58.7
and E?	No	51	8.6
	I don't know	193	32.7
Can infection with viral Hepatitis B and C be prevented?	Yes	388	65.7
	No	20	3.4
	I don't know	183	31.0
Can infection with viral Hepatitis A and E be	Yes	355	60.1
prevented?	No	24	4.1
	I don't know	212	35.9
Is there a vaccine for viral hepatitis A	Yes	249	42.1
	No	72	12.2
	I don't know	270	45.7
Is there a vaccine for viral hepatitis B	Yes	312	52.8
	No	35	5.9
	I don't know	244	41.3
Is there a vaccine for viral hepatitis C?	Yes	211	35.7
	No	101	17.1
	I don't know	279	47.2
Is HCV curable?	Yes	252	42.6
	No	57	9.6
	I don't know	282	47.7
Is HBV curable?	Yes	275	46.5
	No	58	9.8

	I don't know	258	43.7
Does Hepatitis B and C spread like AIDS?	Yes	279	47.2
	No	80	13.5
	I don't know	232	39.3
Blood should be screened for hepatitis virus before	Yes	494	83.6
lonation?	No	14	2.4
	I don't know	83	14.0
Clean and cock food thoroughly cannot prevent	Yes	195	33.0
Hepatitis A and E virus?	No	170	28.8
	I don't know	226	38.2
Sterile needles should be used when injecting to	Yes	473	80.0
prevent infection with viral hepatitis?	No	9	1.5
	I don't know	109	18.4

As shown in figure (2), out of 591 participants, only 3.4% (20 respondents) strongly agree that a person with hepatitis should be allowed to donate blood, and 1.4% (8 respondents) agree. In contrast, a significant majority of 59% (349 respondents) strongly disagree, and 24.4% (144 respondents) disagree with this statement. Meanwhile, 11.8% (70 respondents) remain neutral. These findings demonstrate that most participants understand the risks associated with allowing individuals with hepatitis to donate blood, reflecting a general awareness of the potential for disease transmission through blood donations.

Figure (2): Illustrates if a person with hepatitis infection should donate blood according to participants.

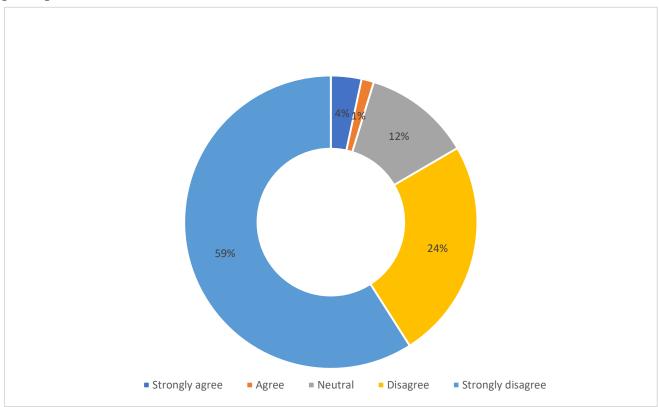


Table (3) reveals a compelling insight into participants' attitudes and level of awareness regarding hepatitis. The survey, which encompasses a sizable cohort of 591 individuals, highlights a notable ambivalence towards engaging with those affected by liver virus infections. While a significant minority expressed non-discriminatory views—indicated by 16.4% strongly agreeing and 19.3% agreeing with the statement on interacting with virus carriers—most participants remained neutral (40.4%), underscoring a prevailing uncertainty or lack of knowledge. Conversely, a robust 44% of respondents strongly believed that individuals with hepatitis should be excluded from restaurant and cafeteria employment, revealing a strong stigma associated with the condition. Concerns about infection rates are apparent, with 39.6% of participants agreeing that they held worries about liver viruses. Interestingly, there exists a willingness to undergo testing, as evidenced by 43.5% expressing strong agreement with the need for detection, suggesting a dichotomy between personal apprehensions and the readiness to confront the issue directly.

Parameter	·	No.	Percent
			(%)
I have no objection to dealing with someone who has	Strongly agree	97	16.4
a liver virus	Agree	114	19.3
_	Neutral	239	40.4
_	Disagree	87	14.7
	Strongly disagree	54	9.1
I don't mind having my child in the same class with	Strongly agree	40	6.8
children with any type of hepatitis viruses	Agree	58	9.8
	Neutral	191	32.3
	Disagree	162	27.4
	Strongly disagree	140	23.7
I don't mind sharing my personal gadgets with	Strongly agree	32	5.4
nyone else	Agree	74	12.5
	Neutral	84	14.2
	Disagree	138	23.4
	Strongly disagree	263	44.5
Hepatitis viral vaccines should not be mandatory	Strongly agree	26	4.4
-	Agree	37	6.3
-	Neutral	142	24.0
-	Disagree	162	27.4
-	Strongly disagree	224	37.9
People with a hepatitis virus should not be allowed to	Strongly agree	260	44.0
work in restaurants and cafeterias	Agree	127	21.5
·	Neutral	135	22.8
-	Disagree	35	5.9
-	Strongly disagree	34	5.8
A person with hepatitis should be allowed to donate	Strongly agree	20	3.4
blood	Agree	8	1.4
	Neutral	70	11.8
-	Disagree	144	24.4

Table (3): participants' awareness towards hepatitis (n=591).

	Strongly disagree	349	59.1
I have concerns about a liver virus	Strongly agree	119	20.1
	Agree	234	39.6
	Neutral	182	30.8
	Disagree	41	6.9
	Strongly disagree	15	2.5
Infection with a liver virus is shameful	Strongly agree	19	3.2
	Agree	31	5.2
	Neutral	148	25.0
	Disagree	185	31.3
	Strongly disagree	208	35.2
It is safe to have a meal with a hepatitis patient	Strongly agree	21	3.6
	Agree	62	10.5
	Neutral	202	34.2
	Disagree	171	28.9
	Strongly disagree	135	22.8
I am willing to detect the liver virus	Strongly agree	257	43.5
	Agree	227	38.4
	Neutral	83	14.0
	Disagree	11	1.9
	Strongly disagree	13	2.2

The data presented in Table 4 regarding the knowledge levels about hepatitis among the surveyed population reveals a concerning trend that merits further attention. Notably, while a minority, comprising 18.4% of respondents, demonstrated a high level of knowledge, the majority, amounting to 47.9%, classified as having low knowledge levels. This indicates that nearly half of the participants are inadequately informed about hepatitis, which is critical given the potential health ramifications associated with this disease. The moderate knowledge group, making up 33.7%, suggests that there is some awareness, but it may not be sufficient for effective prevention or management strategies.

	Frequency	Percent
High level of knowledge	109	18.4
Moderate knowledge	199	33.7
Low knowledge level	283	47.9
Total	591	100.0

The data presented in Table 5 elucidates the varying levels of awareness regarding hepatitis among a sample of 591 respondents. Notably, a significant proportion, accounting for 71.7%, exhibited moderate awareness about the disease, indicating a substantial understanding but suggesting the necessity for further education to elevate this awareness to high levels. In contrast, only 10.7% of participants demonstrated high awareness, raising concerns about the adequacy of current informational resources and outreach programs related to hepatitis. Furthermore, 17.6% of individuals showed low awareness,

highlighting a critical gap in knowledge that could potentially lead to increased risks of transmission and complications associated with the disease.

	Frequency	Percent
High awareness	63	10.7
Moderate awareness	424	71.7
Low awareness	104	17.6
Total	591	100.0

Table (5): Shows awareness level about hepatitis score results.

Table (6) shows that the knowledge level of hepatitis has statistically significant relation to age (P value=0.0001), educational level (P value=0.045), occupation (P value=0.049), and monthly income (P value=0.014). It also shows statistically insignificant relation to gender, nationality, marital status, and region of residence.

Parameters		Knowledge level		Total	Р
		High or moderate	Low knowledge	(N=591)	value*
		knowledge	level		
Gender	Female	192	162	354	0.207
		62.3%	57.2%	59.9%	
	Male	116	121	237	
		37.7%	42.8%	40.1%	
Age	less than 20	33	74	107	0.0001
	years	10.7%	26.1%	18.1%	
	20 to 21	59	65	124	
		19.2%	23.0%	21.0%	
	22 to 23	50	32	82	
		16.2%	11.3%	13.9%	
	24 to 30	59	35	94	
		19.2%	12.4%	15.9%	
	31 to 45	71	39	110	
		23.1%	13.8%	18.6%	
	more than 45	36	38	74	
		11.7%	13.4%	12.5%	
Nationality	Saudi	288	262	550	0.658
·		93.5%	92.6%	93.1%	
	Non-Saudi	20	21	41	
		6.5%	7.4%	6.9%	_
Educational	Middle school	2	2	4	0.045
level		0.6%	0.7%	0.7%	
	High school	43	41	84	
		14.0%	14.5%	14.2%	

 Table (6): Relation between knowledge level of hepatitis and sociodemographic characteristics.

Volume 06 Issue 2 2024

	Diploma	14	17	31	
	1	4.5%	6.0%	5.2%	
	University	104	122	226	
	student	33.8%	43.1%	38.2%	
	Bachelor's	132	90	222	
	degree	42.9%	31.8%	37.6%	
	Master's degree	9	11	20	
		2.9%	3.9%	3.4%	
	PHD	4	0	4	
		1.3%	0.0%	0.7%	
Marital status	Single	199	198	397	0.096
	~	64.6%	70.0%	67.2%	
	Married	96	78	174	
	1.1uiiieu	31.2%	27.6%	29.4%	
	Divorced	8	1	9	
	Divolocu	2.6%	0.4%	1.5%	
	Widowed	5	6	11.570	
	Widowed	1.6%	2.1%	1.9%	
Residential	Northern region	5	4	9	0.270
region	Normenn region	1.6%	1.4%	1.5%	0.270
region	Southern region Central region	1.070	6	20	
		4.5%	2.1%	3.4%	
		18	18	3.4%	
		5.8%	6.4%	6.1%	
	E				
	Eastern region	30 9.7%	40	70	
	Westernensien		14.1%	11.8%	
	Western region	241	215	456	
0	Ctra 1 aut	78.2%	76.0%	77.2%	0.040
Occupation	Student	158	169	327	0.049
	P 1	51.3%	59.7%	55.3%	
	Employee	98	62	160	
	T T 1 1	31.8%	21.9%	27.1%	
	Unemployed	40	37	77	
		13.0%	13.1%	13.0%	
	Retired	12	15	27	
		3.9%	5.3%	4.6%	
Monthly	Less than 1000	112	140	252	0.014
income		36.4%	49.5%	42.6%	
	1000 to 5000	80	65	145	
		26.0%	23.0%	24.5%	
	5001 to 10000	36	31	67	
		11.7%	11.0%	11.3%	
	10001 to 15000	30	18	48	
		9.7%	6.4%	8.1%	

Volume 06 Issue 2 2024

More than	50	29	79			
15000	16.2%	10.2%	13.4%			
*Dualua was considered significant if < 0.05						

**P* value was considered significant if ≤ 0.05 .

Table (7) shows that the awareness level of hepatitis has statistically significant relation to region of residence (P value=0.049). It also shows statistically insignificant relation to gender, age, educational level, nationality, monthly income, marital status, and occupation.

Parameters		Awareness level		Total	Р
		High or moderate	Low awareness	(N=591)	value*
		awareness			
Gender	Female	295	59	354	0.468
		60.6%	56.7%	59.9%	
	Male	192	45	237	
		39.4%	43.3%	40.1%	
Age	less than 20	94	13	107	0.108
	years 20 to 21	19.3%	12.5%	18.1%	
		101	23	124	
		20.7%	22.1%	21.0%	
	22 to 23	71	11	82	
		14.6%	10.6%	13.9%	
	24 to 30	70	24	94	
		14.4%	23.1%	15.9%	
	31 to 45	87	23	110	
		17.9%	22.1%	18.6%	
	more than 45	64	10	74	
		13.1%	9.6%	12.5%	
Nationality	Saudi	450	100	550	0.172
		92.4%	96.2%	93.1%	
	Non-Saudi	37	4	41	
		7.6%	3.8%	6.9%	
Educational level	Middle school	3	1	4	0.345
		0.6%	1.0%	0.7%	
	High school	76	8	84	
		15.6%	7.7%	14.2%	
	Diploma	23	8	31	
		4.7%	7.7%	5.2%	
	University	183	43	226	
	student	37.6%	41.3%	38.2%	
	Bachelor's degree	181	41	222	
		37.2%	39.4%	37.6%	
	Master's degree	17	3	20	
		3.5%	2.9%	3.4%	

 Table (7): Awareness level of hepatitis in association with sociodemographic characteristics.

Volume 06 Issue 2 2024

	PHD	4	0	4	
		0.8%	0.0%	0.7%	
Marital status	Single	332	65	397	0.056
		68.2%	62.5%	67.2%	
	Married	143	31	174	
		29.4%	29.8%	29.4%	
	Divorced	5	4	9	
		1.0%	3.8%	1.5%	
	Widowed	7	4	11	
		1.4%	3.8%	1.9%	
Residential region	Northern region	7	2	9	0.049
		1.4%	1.9%	1.5%	
	Southern region	12	8	20	
		2.5%	7.7%	3.4%	
	Central region	31	5	36	
		6.4%	4.8%	6.1%	
	Eastern region	54	16	70	
		11.1%	15.4%	11.8%	
	Western region	383	73	456	
		78.6%	70.2%	77.2%	
Occupation	Student	273	54	327	0.553
		56.1%	51.9%	55.3%	
	Employee	126	34	160	
		25.9%	32.7%	27.1%	
	Unemployed	65	12	77	
		13.3%	11.5%	13.0%	
	Retired	23	4	27	
		4.7%	3.8%	4.6%	
<i>Monthly</i> <i>income</i>	Less than 1000	212	40	252	0.359
		43.5%	38.5%	42.6%	
	1000 to 5000	117	28	145	
		24.0%	26.9%	24.5%	
	5001 to 10000	50	17	67	
		10.3%	16.3%	11.3%	
	10001 to 15000	40	8	48	
		8.2%	7.7%	8.1%	
	More than 15000	68	11	79	
		14.0%	10.6%	13.4%	

*P value was considered significant if ≤ 0.05 .

Discussion:

Hepatitis is an inflammatory condition of the liver that may resolve on its own or progress to fibrosis, cirrhosis, or even liver cancer. Various viruses can impact the liver, resulting in temporary and benign hepatitis. However, hepatotropic viruses specifically target the liver and can cause clinically significant

2024

hepatitis, which in certain instances may develop into chronic viral hepatitis characterized by viral persistence [11]. To date, six human hepatitis viruses have been identified, labeled in alphabetical order from hepatitis A virus (HAV) to HGV. The severity and duration of hepatitis can significantly vary based on the infectious agent and associated comorbidities [12]. Depending on the cause of hepatitis, the severity can differ greatly, ranging from mild cases that are almost asymptomatic to severe instances that necessitate liver transplantation. Hepatitis is also categorized into "acute" and "chronic" forms, depending on the length of liver inflammation. Some types of hepatitis can resolve swiftly, while others may evolve into chronic conditions lasting for years. Certain individuals may experience rapid progression to fulminant liver failure, whereas some may remain asymptomatic carriers [13]. A wealth of comprehensive research and numerous academic publications consistently reveal a troubling pattern: knowledge and awareness regarding viral hepatitis are surprisingly low. In spite of the plethora of available information and resources, a considerable segment of the population remains unaware of the causes, modes of transmission, symptoms, and potential ramifications of this infectious disease [14]. Thus, we aimed in this study to determine the level of knowledge and awareness about hepatitis types, symptoms, transmission routes, complications, and risk factors among Saudi populations.

Our study's findings on the knowledge and awareness of hepatitis among participants in Saudi Arabia reveal significant gaps when compared to previous research. In a study by Bashair S. Alotaibi et al. [15], it was reported that 56.8% of participants recognized hepatitis A, B, C, D, and E as viral infections, which aligns closely with our finding of 63.3%, though a notable percentage of participants in both studies expressed uncertainty. Furthermore, while awareness regarding vaccination was moderate at 53.6% in Alotaibi's study, our research highlighted a concerning 47.2% of participants unaware of any hepatitis C vaccination. Personal hygiene awareness as a preventive measure was recorded at 61% in Alotaibi's cohort, which is lower than the 59.2% in our findings, yet both indicate a critical need for improved education on preventive strategies. Moreover, addressing attitudes towards individuals with hepatitis, Alotaibi's study indicated that 43% of participants viewed hepatitis C as curable, which gives a more optimistic outlook compared to our finding where 44% believed such individuals should be excluded from specific occupations. This stigma reflects broader societal attitudes that may hinder education and open conversations about the disease. Contrasting with our study, where only 18.4% demonstrated high overall knowledge of hepatitis, other studies reveal varying levels of knowledge within different demographics. For instance, a previous study in Taif, KSA, noted a knowledge level of 70% regarding HBV alone, indicating regional differences in awareness [16]. In comparison, a general population study in China reported only 36.1% of participants with sufficient knowledge about Hepatitis B and C [17], suggesting that despite our participants displaying better knowledge regarding hepatitis viruses, there remains an urgent need for culturally adapted educational interventions. Studies focused on hepatitis E further illustrate the mixed awareness landscape. Shaima O. Althobaiti [18] identified that 34% of participants had not heard of hepatitis E, which highlights a discrepancy in knowledge when compared to our findings, potentially suggesting that educational outreach may need to be more inclusive of all hepatitis types. Additionally, awareness about the symptoms of hepatitis was relatively low, as demonstrated by the 39.5% knowledge level about hepatitis E in Althobaiti's study. In comparison to other global statistics, a recent Hong Kong study indicated that 62.4% and 19% of participants believed in the existence of vaccinations for hepatitis B and C, respectively [19]. This contrasts with the findings of Al Jouf dentists, where a significant proportion, 78%, concurred that individuals infected with hepatitis should not work in food-service roles, accentuating the pervasive stigma associated with hepatitis in various societies [20]. Moreover, findings of another study in Lahore, Pakistan, showed that 52% of their general public respondents believed that it is safe to deal and sit with patients infected with HCV [21]. In comparison, a study among Puerto Rican adults examined the 8395

knowledge regarding HAV vaccination, it was found that one-half (50.7%) of the participants knew that HAV can be prevented by a vaccine [22]. moreover, 86.3% of the total participants (N = 710) recognized the importance of good sanitation and personal hygiene in preventing HAV. Additionally, results from a study conducted among patients visiting a hepatitis clinic in a tertiary care hospital in Rawalpindi, Pakistan, in which they found that 48% of the participants indicated that viral hepatitis is curable coincides with our study results [23].

Conclusion:

In conclusion, this study underscores a pressing need for enhanced education and awareness regarding viral hepatitis among the Saudi Arabian population. Despite a moderate level of recognition of the hepatitis viruses, significant gaps persist in knowledge about prevention, symptoms, and vaccination options, particularly for hepatitis C. The prevalent stigma associated with the disease further complicates public perceptions, indicating an urgent call for targeted educational interventions. Addressing these knowledge deficiencies is essential to reduce the disease burden, promote early diagnosis, and foster a supportive environment for individuals affected by hepatitis. By developing culturally relevant educational resources, public health initiatives can improve understanding and ultimately mitigate the impact of hepatitis in the community.

Ethical approval

An informed consent was obtained from each participant after explaining the study in full and clarifying that participation is voluntary. Data collected were securely saved and used for research purposes only.

Funding

There was no external funding for this study.

Conflict of interests

The authors declare no conflict of interest.

Informed consent:

Written informed consent was acquired from each individual study participant.

Data and materials availability

All data associated with this study are present in the paper.

References:

- 1. Attitude K, Based F, Sectional C. Knowledge Attitude and Practice about Hepatitis C Virus and Associated Factors among Waste Handlers at Public Hospitals of Sidama Region, Ethiopia: Facility Based Cross Sectional Study. J Electr Electron Eng. 2023;2(3):1–9.
- 2. Chonka T, Endashaw G, Zerihun E, Beyene Shashamo B. Knowledge, attitude, and practice towards hepatitis B and C virus infection and associated factors among adults living at selected

woredas in Gamo Zone, Southern Ethiopia: a cross-sectional study. BMC Public Health. 2024;24(1):1–10.

- 3. Dehghani B, Dehghani A, Sarvari J. Knowledge and Awareness Regarding Hepatitis B, Hepatitis C, and Human Immunodeficiency Viruses Among College Students: A Report From Iran. Int Q Community Health Educ. 2020;41(1):15–23.
- 4. Alali AA, Abo-Shehada MN. Prevalence of Hepatitis B Virus infection in the Gulf Cooperation Council: a systematic review and meta-analysis. BMC Infect Dis. 2022 Dec 1;22(1).
- 5. Călugăreanu V. Knowledge, attitudes, and practices of the population regarding viral Hepatitis B and C worldwide : a systematic literature review. 2024;11(2):52–61.
- 6. Alzahrani MS, Ayn Aldeen A, Almalki RS, Algethami MB, Altowairqi NF, Alzahrani A, et al. Knowledge of and Testing Rate for Hepatitis C Infection among the General Public of Saudi Arabia: A Cross-Sectional Study. Int J Environ Res Public Health. 2023;20(3).
- 7. Wedhaya MA. Assessment of Knowledge, Attitude and Practice Towards Hepatitis B Among Healthy Population in Saudi Arabia, 2017. World J Pharm Res. 2017;69(October):126–35.
- 8. Farooqi WA, AlGubran LM, Abukaram TM, Alharbi LK, Alsanea RA, Zubaidi GA, et al. Awareness of Hepatitis C Among the General Population of Riyadh, KSA, in 2023: A Cross-Sectional Study. Cureus. 2024;16(1):1–12.
- 9. Qadir MI. Apprehensive Knowledge of Hepatitis E among Different Individuals. 2019;(June).
- 10. Alotaibi BS, Althobaiti MA, Hazazi AY, Hazazi SY, Nassir RA, Alhaddad MS, et al. Exploration of Knowledge, Attitude, and Practice Among Residents of Saudi Arabia Toward Hepatitis Viruses. Inq (United States). 2021;58:1–10.
- 11. Walker R., Whittlesea C. Clinical Pharmacy and Therapeutics. Edinburgh, London, New York. Oxford, Philadelphia, St. Louis, Sydney, Toronto: Churchill Livingstone; 2007. [Google Scholar]
- 12. Pawlotsky J. M., Feld J. J., Zeuzem S., Hoofnagle J. H. From non-A, non-B hepatitis to hepatitis C virus cure. J Hepatol. 2015;62(1):S87-S99. [PubMed] [Google Scholar]
- 13. Khuroo M. S., Khuroo M. S., Khuroo N. S. Hepatitis E: discovery, global impact, control and cure. World J Gastroenterol. 2016;22(31):7030. [PMC free article] [PubMed] [Google Scholar]
- 14. Seeff L. B. The history of the "natural history" of hepatitis C (1968-2009). Liver Int. 2009;29:89-99. [PMC free article] [PubMed] [Google Scholar]
- 15. Alotaibi, Bashair S et al. "Exploration of Knowledge, Attitude, and Practice Among Residents of Saudi Arabia Toward Hepatitis Viruses." *Inquiry : a journal of medical care organization, provision and financing* vol. 58 (2021): 469580211059965. doi:10.1177/00469580211059965
- 16. Elbur A., Almalki N., Alghamdi A., Alqarni Alqarni H. Knowledge, attitude and practice on Hepatitis B: A survey among the internet users in Taif, Kingdom of Saudi Arabia. J Infect Dis Epidemiol. 2017;3:036. [Google Scholar]
- Li T., Wang R., Zhao Y., Su S., Zeng H. Public awareness and influencing factors regarding hepatitis B and hepatitis C in Chongqing municipality and Chengdu City, China: A crosssectional study with community residents. BMJ Open. 2021;11(8):e045630. [PMC free article] [PubMed] [Google Scholar]
- 18. Althobaiti, Shaima O et al. "Assessment of Knowledge, Attitude, and Practice among Saudi Residents Regarding Hepatitis E Virus." *The American journal of tropical medicine and hygiene* vol. 106,2 626-631. 15 Nov. 2021, doi:10.4269/ajtmh.21-0841
- Chan H. L., Wong G. L., Wong V. W., Wong M. C., Chan C. Y., Singh S. Questionnaire survey on knowledge, attitudes, and behaviour towards viral hepatitis among the Hong Kong public. *Hong Kong Med J.* 2021;27:1-9. 10.12809/hkmj219463. [PubMed] [CrossRef] [Google

Scholar]

- 20. Al-Hazmi A. Knowledge, attitudes and practice of dentists concerning the occupational risks of hepatitis B virus in Al Jouf Province, Saudi Arabia. *Niger J Clin Pract.* 2015;18(2):276-281. [PubMed] [Google Scholar]
- Nawaz K., Hussain M., Majeed I., Afzal M., Gilani S. A. Knowledge, attitude and practices regarding Hepatitis C prevention among people of rural community, Lahore. *Int J Soc Sci Manag.* 2018;5(3):138-145. [Google Scholar]
- 22. Soto-Salgado M Suárez E Ortiz AP Adrovet S Marrero E Meléndez M Colón HM Albizu C Santos Md C Torres E , 2011. Knowledge of viral hepatitis among Puerto Rican adults: implications for prevention. *J Community Health* 36: 565–573. [PMC free article] [PubMed] [Google Scholar]
- 23. Mustafa RE Mushtaq S Akhtar N Yameen MA, 2019. Assessment of knowledge, attitude and practice towards hepatitis among patients visiting the hepatitis clinic in tertiary care hospital, Rawalpindi, Pakistan. *J Pak Med Assoc* 69: 1136–1141. [PubMed] [Google Scholar]