
CAHIERS MAGELLANES-NS
Volume 06 Issue 1
2024

ISSN:1624-1940

 DOI 10.6084/m9.figshare.26090392
http://magellanes.com/

342

VITEREACT: STREAMLINED STATIC SITE GENERATION WITH REACT

1Vasu Singh, 2Ujjawal Tyagi, 3Sunny, 4Uday Veer Singh, 5Rohit Kumar Singh*

Department of CSE, MIET, Meerut
vasu.singh.cse.2020@miet.ac.in,sunny.v.cse.2020@miet.ac.in, ujjawal.tyagi.cse.2020@miet.ac.in,

uday.singh.cse.2020@miet.ac.in, rohit.singh@miet.ac.in

*Corresponding author: Rohit Kumar Singh
rohit.singh@miet.ac.in

1 Abstract
Static websites are used to build content-driven websites. They offer ease of development, low-security
risks, and can generate value quickly due to informational content being quite significant. With the
rising need for content marketing, dynamic websites became popular as they allow one to present actual
information. All of this comes at the cost of impacting page loading speed which is also very important
for content-centric websites. Static site generators (SSGs) aim to solve this issue. SSG is a tool to build
a static website from raw markdown files. It adds more flexibility to static websites allowing them to
react to dynamic content changes, regenerate, and publish again. The proposed system is an
implementation of a static web page generator.
This study presents the development and evaluation of a Static Site Generator (SSG) built using Vite, a
modern build tool for web development, and React, a popular JavaScript library for building UI.
Leveraging the efficiency and flexibility of Vite and the component-based architecture of React, our
SSG aims to streamline
website development and enhance performance.
The outcomes of our implementation include improved website speed, enhanced user experiences, and
simplified development workflows. By adopting these modern technologies, we demonstrate how SSGs
can benefit from cutting-edge tools and frameworks to meet the demands of modern web development
practices.
Vite's innovative build pipeline leverages modern JavaScript module bundling techniques, such as ES
modules (ESM), to optimize the generation of static assets. Unlike traditional bundlers, which bundle
all dependencies into a single JavaScript file, Vite generates optimized assets on-demand, only bundling
the specific modules required for each page or component. This approach eliminates unnecessary
bundling and reduces bundle sizes, resulting in faster load times and improved website performance.
Additionally, Vite's support for server-side rendering (SSR) enables seamless integration with React
components, allowing developers to leverage the power of React for building dynamic and interactive
UI within static websites.

Keywords
SSG(Static Site Generator) ,SSR(Server Side Rendering), Vite(Module Bundler)
,CDN(Content network delivery) ,SEO(Search engine optimization)
,CMS(Content management system)

CAHIERS MAGELLANES-NS
Volume 06 Issue 1
2024

ISSN:1624-1940

 DOI 10.6084/m9.figshare.26090392
http://magellanes.com/

343

2 Introduction
Static Site Generator (SSG) is used for building fast, static websites. It takes your source content written
in Markdown, applies a predefined theme to it, and generates static HTML pages that can be easily
deployed.
SSGs operate by taking source content typically written in Markdown or similar markup languages,
applying a predefined theme or template to it, and generating static HTML pages. These pages are pre-
rendered during the build process, eliminating the need for server-side processing or database queries
at runtime. This results in lightweight, performant websites that can be easily deployed to any web
server or Content Delivery Network (CDN), making them ideal for a wide range of applications.
SSGs provided a solution by offering a clean separation of concerns between content management and
presentation layers, empowering developers to focus on creating compelling content while leveraging
the benefits of static site architecture.

Use Cases and Benefits

● Better fit for documentation Websites.
● Faster page load time.
● Better SEO due to server-side rendering.
● Easy to deploy and more secure.
● Blogs, Portfolios, and Marketing Sites

Challenges of SSG

While Static Site Generators (SSGs) offer numerous benefits, they also come with several challenges
that developers and organizations need to consider:

● SSGs generate static HTML files, which lack dynamic functionality typically associated with
server-side processing. This limitation means implementing user authentication, real-time
updates, and interactive forms can be challenging and often requires integrating third-party
services or client-side JavaScript frameworks.

● SSGs rely on various dependencies, including template engines, plugins, and external libraries,

which need to be managed effectively.

● Integrating external services, such as analytics platforms, contact forms, or authentication
providers, may require additional setup and configuration in SSGs.

● Since SSGs generate static files that are served directly to users, server-side functionality, such
as server-side rendering (SSR) or database interactions, is not inherently supported.

CAHIERS MAGELLANES-NS
Volume 06 Issue 1
2024

ISSN:1624-1940

 DOI 10.6084/m9.figshare.26090392
http://magellanes.com/

344

3 Literature Review
The concept of static site generation dates back to the early days of the web, where websites were
composed of static HTML files [1]. The resurgence of interest in static sites came with the rise of
modern web development practices, including the adoption of SSGs. Early pioneers such as Jekyll,
developed by GitHub, and Octopress, have laid the groundwork for the current ecosystem of static site
generators. Since then, numerous SSGs have emerged [2], each with its unique features and
functionalities, catering to diverse developer needs and preferences.
Static site generators offer a range of features that differentiate them from traditional Content
Management Systems (CMS) and dynamic web frameworks [3-5]. These features include speed and
performance, simplicity and security, version control and collaboration, content flexibility, scalability,
and reliability. By pre-rendering pages and serving them as static files, SSGs eliminate the need for
server-side processing, resulting in faster load times and improved performance.
Additionally, the simplicity of static sites makes them inherently more secure and easier to deploy than
dynamic sites, appealing to developers and organizations concerned about cybersecurity.
Moreover, the cost-effectiveness of SSGs, stemming from reduced hosting costs and infrastructure
complexity, makes them an attractive option for businesses and developers alike [6].
Furthermore, SSGs offer benefits in terms of version control and collaboration, content flexibility,
scalability, and reliability. With built-in support for version control systems like Git, developers can
easily collaborate on projects and track changes over time. The flexibility of SSGs allows developers to
structure content in a way that best suits their needs, while scalability ensures that websites can handle
increased traffic without sacrificing performance or reliability.
The rise of Headless Content Management Systems (CMS) has further bolstered the popularity of static
site generators. Headless CMS solutions decouple the content management and presentation layers of
websites [7], allowing developers to leverage the flexibility and simplicity of SSGs while still benefiting
from the content authoring and editing capabilities of a CMS. This hybrid approach offers the best of
both worlds, enabling developers to build dynamic, content-rich websites with the speed and security
of static site generation.
The success of static site generators is also attributed to strong community support and extensive
documentation [8]. Developers have access to vibrant communities, online forums, and documentation
resources where they can seek help, share insights, and collaborate on projects. This ecosystem of
support fosters innovation and knowledge sharing, driving the continuous improvement of static site
generators and empowering developers to build exceptional web experiences.
Despite their many advantages, SSGs also have some limitations and challenges. These include the lack
of dynamic functionality [9-10], complexity for non-technical users, build times and regeneration
delays, dependency management, and a learning curve for developers transitioning from dynamic CMS
platforms. While SSGs excel in certain use cases, such as blogs, portfolios, and documentation sites,
they may not be suitable for applications requiring real-time data updates or complex interactions [11].
To address challenges such as build times and regeneration delays, static site generators have adopted
advanced build optimization techniques. Tools like webpack, Rollup, and Vite are commonly used to
optimize asset bundling, code splitting, and tree shaking, resulting in faster build times and improved

CAHIERS MAGELLANES-NS
Volume 06 Issue 1
2024

ISSN:1624-1940

 DOI 10.6084/m9.figshare.26090392
http://magellanes.com/

345

website performance. Additionally, caching strategies and incremental builds help minimize
regeneration delays, enabling developers to iterate quickly and deploy changes with confidence.

Key Features and Functionality:
Static Site Generators offer several key features and functionalities that distinguish them from
traditional CMS platforms and dynamic frameworks. These include:

Simplicity and Security: Static sites, generated by SSGs, are inherently more secure and easier to
deploy than dynamic sites, as they do not rely on server-side scripting or databases [12].

Speed and Performance: By pre-rendering pages at build time, SSGs eliminate the need for server-
side processing, resulting in faster load times and improved performance [13].

Content Flexibility: SSGs offer support for various markup languages and content formats,
empowering content creators to use their preferred tools and workflows.

Scalability and Reliability: Static sites generated by SSGs are highly scalable and resilient to traffic
spikes, as they can be served directly from Content Delivery Networks (CDNs) without relying on
backend infrastructure.

Limitations and Challenges:
Despite their advantages, SSGs also have some limitations and challenges:

Limited Dynamic Functionality: Static sites generated by SSGs are limited in their ability to support
dynamic content and interactive features, which may be necessary for certain types of applications.

Complexity for Non-Technical Users: While developers may appreciate the simplicity of SSG
workflows, content creators with limited technical knowledge may find it challenging to work with
SSGs.
Build Times and Regeneration: Large sites with extensive content may experience longer build times
and regeneration delays, especially when using complex templates or plugins.

Dependency Management: Managing dependencies and third-party integrations can be more
challenging in SSGs compared to traditional CMS platforms.

4 Project Architecture

CAHIERS MAGELLANES-NS
Volume 06 Issue 1
2024

ISSN:1624-1940

 DOI 10.6084/m9.figshare.26090392
http://magellanes.com/

346

SSG’s aims to provide great Developer Experience(DX) when working with Markdown content.
● Vite-Powered: Cold start, with edits always instantly reflected (<100ms) without page reload.
● Built-in Markdown Extensions:

It provides many advanced features that are prebuilt in it and making it ideal for highly technical
documentation.

● React-Enhanced Markdown: Each Markdown page is also a React Single-File Component,
thanks to React JSX syntax compatibility with HTML. You can embed interactivity in your
static content BY using React components.

General approach to build the project

● Building a static site generator (SSG) for React powered by Vite is a great project that combines
the speed of Vite's development server and the flexibility of React for building static websites.
Below, I'll outline the high-level approach to creating such a project

In simple terms, we are describing the process of setting up a development environment and project
structure for building a web application with React and server-side rendering (SSR) using Vite. Here's
a breakdown of what this means:

● CLI Scaffolding Construction: You start by using a Command Line Interface (CLI) tool to create
the basic framework of your project. This sets up the essential files and tools needed for
development.

● Vite Based Dev Server: You use a tool called Vite to create a development server [14]. This
server helps you run and test your React application during development. It's like a virtual space
where your web app lives while you work on it.

● Construction of the Basic Directory Structure: You organize your project by creating folders
and files in a structured way. For example, you might have folders for your React components,
static assets, and configuration files.

● Front-End React Main Theme Component: You build the main component of your web
application using React. This component represents the core structure and functionality of your
website. It's the "theme" or style that your site follows [15].

● Server-Side Rendering (SSR): You set up server-side rendering, which means your web pages
are generated on the server (like a powerful computer) rather than just in the browser. This can
help with performance and SEO.

CAHIERS MAGELLANES-NS
Volume 06 Issue 1
2024

ISSN:1624-1940

 DOI 10.6084/m9.figshare.26090392
http://magellanes.com/

347

● Output HTML: When a user visits your website, the server creates HTML pages with content
and sends them to the user's browser. This HTML is what the user sees and interacts with on the
website.

 Figure 1: Minimal viable Version of project

Dev Server development

First of all, Dev Server is essentially an HTTP Server used during the development phase. It mainly
includes the following functions:

● Compile the resource and return the compiled product to the browser.

● Realize module hot update, push update to the browser when the file changes.

● Static resource services, such as supporting access to static resources such as images.

For example, the famous Dev Server of webpack-dev-serverand Vite are very typical representatives.
In this project, we will build it based on Vite's Dev Server. The main reasons are as follows:

● The construction of the project is completed based on Vite and React .
● Vite Dev Server itself has a complete middleware mechanism for easy expansion.

Figure 2: Dev server overview

Markdown Support

First, what is MDX? It is a syntax file format that focuses on content writing. You can either write

CAHIERS MAGELLANES-NS
Volume 06 Issue 1
2024

ISSN:1624-1940

 DOI 10.6084/m9.figshare.26090392
http://magellanes.com/

348

Markdown syntax or use component syntax JSX. It is very friendly to front-end developers. Why do
you say that? On the one hand, Markdown is a syntax format that we are very familiar with, and we
often use it when we write blogs or articles [16]; on the other hand, as a front-end developer, JSX is
also a syntax that is used daily, and everyone should be familiar with it. Familiar.

We can think of the entire compilation process as a process, and this process will be divided into three
steps:

Figure 3: Compilation process of Markdown data

● The first step is parse the parsing of the AST. After we input the content (such as a piece of
Markdown), we use a Parser to complete the parsing process of the AST, and then output the
syntax tree information.

● The second step is run that a series of AST conversions will be performed at this stage, which
means that there will be a series of plug-ins to operate the syntax tree information.

● The last step is stringify to serialize the AST and convert it into a string format as the final
output.

Support for Server Side Rendering

Why we prefer SSR over CSR?, when the browser gets the HTML content, it can't actually render the
complete page content, because there is basically only an empty div node in the body at this time, and
no real page content is filled in. Then the browser starts to download and execute the JS code, and the
complete page can only be rendered after the framework initialization, data request, DOM insertion,
and other operations. That is, the complete page content in the CSR is essentially rendered after the
execution of the JS code. This mainly leads to two problems:

● The first screen loads slowly: First-screen loading relies on the execution of JS. Downloading
and executing JS may be a very time-consuming operation, especially in some scenarios with
poor network or performance-sensitive low-end machines.

CAHIERS MAGELLANES-NS
Volume 06 Issue 1
2024

ISSN:1624-1940

 DOI 10.6084/m9.figshare.26090392
http://magellanes.com/

349

● Not SEO (search engine optimization) friendly: The HTML of the page has no specific page
content, so search engine crawlers cannot obtain keyword information, which affects the ranking
of the website.

So how does SSR solve these problems

In the SSR scenario, the server generates complete HTML content and returns it directly to the
browser. The browser can render the complete first-screen content based on the HTML without relying
on JS loading, which can reduce the first-screen rendering on the one hand. time, on the other hand, it
can also display the complete page content to search engine crawlers, which is beneficial to SEO.

Figure 4: Content rendering on server

Of course, SSR can only generate the content and structure of the page, and cannot complete event
binding. Therefore, it is necessary to execute the JS script of CSR in the browser to complete event
binding, so that the page has the ability to interact. This process is called hydration.

For the runtime of SSR, it can generally be divided into relatively fixed life cycle stages. Simply put, it
can be organized into the following core stages:

Figure 5: SSR fetching logic

● Load the SSR entry module: At this stage, we need to determine the entry of the SSR build
product, that is, where is the entry of the component, and load the corresponding module.

CAHIERS MAGELLANES-NS
Volume 06 Issue 1
2024

ISSN:1624-1940

 DOI 10.6084/m9.figshare.26090392
http://magellanes.com/

350

● Perform data prefetching: At this time, the Node side will query the database or network
request to obtain the data required by the application.

● Rendering components: This stage is the core of SSR, which mainly renders the components
loaded in step 1 into HTML strings or Streams.

● HTML splicing: After the component is rendered, we need to concatenate the complete HTML
string and return it to the browser as a response.

How we package our project using Vite-esbuild support

So, what problems will arise if this is implemented? We can first look at the normal prepackaging
process (taking React as an example):
Vite will use dep:react this proxy module as the entry content to load in Esbuild. At the same time, the
prepackaging of other libraries may also introduce React, such as the behaviors @emotion/react in this
library require('react').
Now if the proxy module directly reads the content of the real module through the file system instead
of re-exporting.

5 Result
Improved Performance and Speed: The SSG implementation resulted in substantial improvements in
website performance and speed. By pre-rendering pages and optimizing assets during the build process,
we achieved significantly reduced load times and enhanced user experiences, contributing to improved
search engine rankings and user engagement metrics.
SSGs pre-render pages during the build process, generating static HTML files for each page of the
website. With pre-rendered pages, content is readily available to users upon request, reducing latency
and enhancing the overall browsing experience.
During the build process, SSGs optimize assets such as images, stylesheets, and JavaScript files to
minimize file sizes and improve loading efficiency. Techniques such as image compression, code
minification, and asset bundling are commonly employed to reduce the size of assets without sacrificing
quality. By delivering optimized assets to users, SSGs ensure faster load times and smoother
interactions, leading to enhanced user experiences.

Figure 6: Chrome Lighthouse benchmarks

Flexibility and Customization: The SSG solution provided greater flexibility and customization
options compared to traditional CMS platforms. With support for templating engines, content formats,

CAHIERS MAGELLANES-NS
Volume 06 Issue 1
2024

ISSN:1624-1940

 DOI 10.6084/m9.figshare.26090392
http://magellanes.com/

351

and plugin ecosystems, we were able to tailor our websites to specific requirements and preferences.
Plugins can extend the core functionality of the SSG, adding features such as SEO optimization, image
processing, form handling, and content management. Developers can leverage plugins to tailor their
websites to specific requirements and preferences, without the need for custom development.
Additionally, plugin ecosystems foster community collaboration and innovation, with developers
contributing new plugins and sharing them with the community.

Enhanced SEO and Metadata Support: Improving support for search engine optimization (SEO) and
metadata management could be a focus for future development. This could include implementing
automated SEO analysis and optimization tools, enhancing metadata configuration options, and
integrating with SEO monitoring and reporting services.
Develop tools or plugins that automate the analysis and optimization of SEO elements within the
website. These tools can scan the website for SEO deficiencies, such as missing meta tags, duplicate
content, or broken links, and provide recommendations for improvement. Additionally, they can offer
on-page optimization suggestions, such as keyword usage, title tag optimization, and internal linking
strategies, to enhance search engine visibility and ranking.
Provide granular control over meta tags, including titles, descriptions, keywords, and social media tags,
allowing developers to customize metadata for each page or content item. Additionally, support
dynamic metadata generation based on content attributes or templates, ensuring that metadata remains
accurate and relevant as the website evolves.

Figure 7: SEO result

Enhanced Security and Reliability: The transition to a static site architecture improved the security
and reliability of our web assets. With no backend infrastructure or server-side vulnerabilities, the SSG
solution offered enhanced resilience against cyber threats and reduced the risk of security breaches,
ensuring the integrity and confidentiality of our website data.
Unlike dynamic websites that rely on databases to store and retrieve content, static sites do not require
database interaction. This eliminates the risk of database-related vulnerabilities, such as SQL injection
attacks or data leakage through misconfigured database permissions. Without a database backend,
sensitive user data is not exposed to potential security threats, ensuring the integrity and confidentiality
of website data.
This eliminates the risk of server-side scripting vulnerabilities, such as remote code execution (RCE) or

CAHIERS MAGELLANES-NS
Volume 06 Issue 1
2024

ISSN:1624-1940

 DOI 10.6084/m9.figshare.26090392
http://magellanes.com/

352

file inclusion attacks, which can compromise server security and lead to data breaches or system
compromise.

Figure 8: Security and Safety

Reduced Server Load and Resource Consumption: By serving pre-rendered static files directly to
users, the SSG solution reduced server load and resource consumption. This resulted in lower server
costs, reduced energy consumption, and improved environmental sustainability, aligning with our
organization's commitment to eco-friendly practices.
By reducing the demand for server resources such as CPU, memory, and bandwidth, SSGs enable
organizations to operate with smaller and more cost-effective server infrastructure. With fewer server
resources required to handle website traffic, organizations can downsize their hosting plans or opt for
more affordable hosting providers, resulting in lower monthly hosting expenses and overall operational
costs.
The decreased server load and resource consumption associated with SSGs translate to lower energy
consumption in data centers and server facilities.

Figure 9: Content rendering time by server

Ease of Maintenance and Updates: The SSG solution simplified the process of website maintenance
and updates. With content stored as plain text files and version-controlled using Git, we achieved greater
transparency, traceability, and ease of rollback, facilitating seamless content updates and site
management tasks.
Static Site Generator solution simplifies the process of website maintenance and updates by storing
content as plain text files, version-controlling content with Git, leveraging automated deployment
pipelines, providing content preview and drafts functionality, and supporting content reuse and
templating. These features and practices enhance transparency, traceability, and ease of rollback,
facilitating seamless content updates and site management tasks for developers and content authors.

CAHIERS MAGELLANES-NS
Volume 06 Issue 1
2024

ISSN:1624-1940

 DOI 10.6084/m9.figshare.26090392
http://magellanes.com/

353

6 Conclusion
As we conclude this project, we can reflect on the journey we've undertaken and the accomplishments
we've achieved. We've successfully built a modern web application powered by React and server-side
rendering (SSR) using Vite. This project represents the dedication and hard work of our team, and it
marks a significant milestone in our development journey.
Throughout this project, we've harnessed the power of React to create dynamic and responsive user
interfaces. The use of Vite as our build tool and development server has greatly streamlined our
development process, offering speed and efficiency.

The goals of this study is to give an overview of the current SSG available for developing, managing,
and hosting static websites, to analyze the differences between dynamic and static websites and to dig
deeper into static website development tools.

Website types – static and dynamic – were introduced and their differences were explained. Static
websites are like compiled programming languages they will need time for compilation but will run fast
afterward. Dynamic sites are like interpreted languages no compilation is needed, but performance-
related and other problems might occur at runtime due to interactivity.

SSGs pre-render pages during the build process, generating static HTML files for each page of the
website and serve them to browser. With pre-rendered pages, content is immediately available to users
request, reducing overhead and enhancing the overall browsing experience.

We found that static tools are modern but developer-centric. Easy-to-use UI for website content editors,
bloggers, etc. But are still lacking the interactivity part and need custom setups to combine them with
different tools.
Wider adoption of static technologies for content-centric websites would simply make the Internet a
better place and reduce the possibilities of network security due to pre-generated content on servers and
provide a better user experience..

Future work
Focus on further optimizing the performance of the SSG solution. This may involve exploring advanced
caching mechanisms, implementing lazy loading for assets, and optimizing asset delivery for improved
website speed and responsiveness.
Improving the content management capabilities of the SSG solution could be a priority. This might
involve developing intuitive user interfaces for content creation and editing, and implementing content
versioning and rollback functionalities.
Improving support for search engine optimization (SEO) and metadata management. This includes
implementing automated SEO analysis and optimization tools, enhancing metadata configuration
options, and integrating with SEO monitoring and reporting services.
Continuously improving the user experience (UX) of the SSG solution could be a key area, this may
involve gathering user feedback, conducting usability testing, and iteratively refining the user interface

CAHIERS MAGELLANES-NS
Volume 06 Issue 1
2024

ISSN:1624-1940

 DOI 10.6084/m9.figshare.26090392
http://magellanes.com/

354

and interaction design to enhance usability and accessibility.

7 References
[1] Petersen, H. (2016). From Static and Dynamic Websites to Static Site Generators. University of
TARTU, Institute of Computer Science.

[2] Camden, R., & Rinaldi, B. (2017). Working with Static Sites: Bringing the Power of Simplicity to
Modern Sites (1st). Reilly Media, Inc.

[3] R. Kumar, R. K. Ratnesh, J. Singh, R. Chandra, G. Singh and V. Vishnoi, Recent Prospects of
Medical Imaging and Sensing Technologies Based on Electrical Impedance Data Acquisition System,
Journal of the Electro Chemical Society, 2023, 170, 117507.
https://doi.org/10.1149/1945-7111/ad050f

[4] R. Kumar, R. K. Ratnesh, J. Singh, A. Kumar and R. Chandra, IoT-Driven Experimental Framework
for Advancing Electrical Impedance Tomography, Journal of Solid-State Science and Technology,
2024, 13, 027002.
https://doi.org/10.1149/2162-8777/ad2331

[5] Mathias Biilmann Christensen. (2015, November) Static Website Generators Reviewed: Jekyll,
Middleman, Roots, Hugo.
https://www.smashingmagazine.com/2015/11/static-website-generators-jekyll-middleman-roots-hugo-
review/

[6] Eduardo Bouças. (2015, May) An Introduction to Static Site Generators.
https://eduardoboucas.com/blog/2015/05/21/an-introduction-to-static-site-generators.html

[7] Wikimedia Foundation. Static web page.
https://en.wikipedia.org/wiki/Static_web_page

[8] Wikimedia Foundation. Dynamic web page.
https://en.wikipedia.org/wiki/Dynamic_web_page

[9] A. Garg, R. K. Ratnesh, Solar Cell Trends, and the Future: A Review, Journal of Pharmaceutical
Negative Results, 2022, 13, 2051-2060.
https://doi.org/10.47750/pnr.2022.13.S06.268

[10] Messenlehner, B., & Coleman, J. (2019). Building web apps with wordpress (2nd ed.). O’Reilly
Media.

[11] Harwani, B. (2015). Foundations of Joomla! (2nd ed.) [PDF]. https://doi:10.1007/978-1-4842-

CAHIERS MAGELLANES-NS
Volume 06 Issue 1
2024

ISSN:1624-1940

 DOI 10.6084/m9.figshare.26090392
http://magellanes.com/

355

0749-9

[12] W3Techs. Usage of reverse proxy services for websites.
https://w3techs.com/technologies/overview/proxy

[13] Chris Bach. (2015, September) Instant Cache Invalidation
https://www.netlify.com/blog/2015/09/17/continuous-deployment

[14] Chris Bach. (2015, September) Continuous Deployment.
https://www.netlify.com/blog/2015/09/17/continuous-deployment/

[15] Alan Shimel. (2013, June) 7 of 10 leading WordPress plugins are vulnerable.
https://www.networkworld.com/article/745486/opensource-subnet-7-of-10-leading-wordpress-
plugins-are-vulnerable.html

[16] Sean Work. (2011) How Loading Time Affects Your Bottom Line.
https://blog.kissmetrics.com/loading-time/

